Origin of abundant moonmilk deposits in a subsurface granitic environment
Subsurface granitic environments are scarce and poorly investigated. A multi‐disciplinary approach was used to characterize the abundant moonmilk deposits and associated microbial communities coating the granite walls of the 16th Century Paranhos spring water tunnel in Porto city (north‐west Portuga...
Gespeichert in:
Veröffentlicht in: | Sedimentology 2018-08, Vol.65 (5), p.1482-1503 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1503 |
---|---|
container_issue | 5 |
container_start_page | 1482 |
container_title | Sedimentology |
container_volume | 65 |
creator | Miller, Ana Z. Garcia‐Sanchez, Angela M. Martin‐Sanchez, Pedro M. Costa Pereira, Manuel F. Spangenberg, Jorge E. Jurado, Valme Dionísio, Amelia Afonso, Maria J. Iglé sias Chaminé, Helder I. Hermosin, Bernardo Saiz‐Jimenez, Cesareo Kwiecien, Ola |
description | Subsurface granitic environments are scarce and poorly investigated. A multi‐disciplinary approach was used to characterize the abundant moonmilk deposits and associated microbial communities coating the granite walls of the 16th Century Paranhos spring water tunnel in Porto city (north‐west Portugal). It is possible that this study is the first record of moonmilk in an urban subsurface granitic environment. The morphology and texture, mineralogical composition, stable isotope composition and microbial diversity of moonmilk deposits have been studied to infer the processes of moonmilk formation. These whitish secondary mineral deposits are composed of very fine needle‐fibre calcite crystals with different morphologies and density. Calcified filaments of fungal hyphae or bacteria were distinguished by field emission scanning electron microscopy. Stable isotope analysis revealed a meteoric origin of the needle‐fibre calcite, with an important contribution of atmospheric CO2, soil respiration and HCO3− from weathering of Ca‐bearing minerals. The DNA‐based analyses revealed the presence of micro‐organisms related to urban contamination, including Actinobacteria, mainly represented by Pseudonocardia hispaniensis, Thaumarchaeota and Ascomycota, dominated by Cladosporium. This microbial composition is consistent with groundwater pollution and contamination sources of the overlying urban area, including garages, petrol stations and wastewater pipeline leakage, showing that the Paranhos tunnel is greatly perturbed by anthropogenic activities. Whether the identified micro‐organisms are involved in the formation of the needle‐fibre calcite or not is difficult to demonstrate, but this study evidenced both abiotic and biogenic genesis for the calcite moonmilk in this subsurface granitic environment. |
doi_str_mv | 10.1111/sed.12431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2070396418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070396418</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3551-4576c7cd269f140eaf53b14a32dfd8c68b11b46c8703daedf8107b6330358b743</originalsourceid><addsrcrecordid>eNp10D1PwzAQBmALgUQpDPwDS0wMaX2xYycjKl-VKnUAZsvxR-XSOsVOQP33GMLKLbc87530InQNZAZ55smaGZSMwgmaAOVVQUkDp2hCCBUFEYyfo4uUtoQAZ3UzQct19BsfcOewaodgVOjxvuvC3u_esbGHLvk-4QwUTkObhuiUtngTVfC919iGTx-ztqG_RGdO7ZK9-ttT9Pb48Lp4Llbrp-XiblUoWlVQsEpwLbQpeeOAEatcRVtgipbGmVrzugVoGde1INQoa1wNRLScUkKruhWMTtHNePcQu4_Bpl5uuyGG_FKWJIcazqDO6nZUOnYpRevkIfq9ikcJRP40JXNT8repbOej_fI7e_wfypeH-zHxDRJBadI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070396418</pqid></control><display><type>article</type><title>Origin of abundant moonmilk deposits in a subsurface granitic environment</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Miller, Ana Z. ; Garcia‐Sanchez, Angela M. ; Martin‐Sanchez, Pedro M. ; Costa Pereira, Manuel F. ; Spangenberg, Jorge E. ; Jurado, Valme ; Dionísio, Amelia ; Afonso, Maria J. ; Iglé sias Chaminé, Helder I. ; Hermosin, Bernardo ; Saiz‐Jimenez, Cesareo ; Kwiecien, Ola</creator><creatorcontrib>Miller, Ana Z. ; Garcia‐Sanchez, Angela M. ; Martin‐Sanchez, Pedro M. ; Costa Pereira, Manuel F. ; Spangenberg, Jorge E. ; Jurado, Valme ; Dionísio, Amelia ; Afonso, Maria J. ; Iglé sias Chaminé, Helder I. ; Hermosin, Bernardo ; Saiz‐Jimenez, Cesareo ; Kwiecien, Ola</creatorcontrib><description>Subsurface granitic environments are scarce and poorly investigated. A multi‐disciplinary approach was used to characterize the abundant moonmilk deposits and associated microbial communities coating the granite walls of the 16th Century Paranhos spring water tunnel in Porto city (north‐west Portugal). It is possible that this study is the first record of moonmilk in an urban subsurface granitic environment. The morphology and texture, mineralogical composition, stable isotope composition and microbial diversity of moonmilk deposits have been studied to infer the processes of moonmilk formation. These whitish secondary mineral deposits are composed of very fine needle‐fibre calcite crystals with different morphologies and density. Calcified filaments of fungal hyphae or bacteria were distinguished by field emission scanning electron microscopy. Stable isotope analysis revealed a meteoric origin of the needle‐fibre calcite, with an important contribution of atmospheric CO2, soil respiration and HCO3− from weathering of Ca‐bearing minerals. The DNA‐based analyses revealed the presence of micro‐organisms related to urban contamination, including Actinobacteria, mainly represented by Pseudonocardia hispaniensis, Thaumarchaeota and Ascomycota, dominated by Cladosporium. This microbial composition is consistent with groundwater pollution and contamination sources of the overlying urban area, including garages, petrol stations and wastewater pipeline leakage, showing that the Paranhos tunnel is greatly perturbed by anthropogenic activities. Whether the identified micro‐organisms are involved in the formation of the needle‐fibre calcite or not is difficult to demonstrate, but this study evidenced both abiotic and biogenic genesis for the calcite moonmilk in this subsurface granitic environment.</description><identifier>ISSN: 0037-0746</identifier><identifier>EISSN: 1365-3091</identifier><identifier>DOI: 10.1111/sed.12431</identifier><language>eng</language><publisher>Madrid: Wiley Subscription Services, Inc</publisher><subject>Abundance ; Anthropogenic factors ; Bacteria ; Biomineralization ; Calcite ; Carbon dioxide ; carbonate precipitation ; Contamination ; Crystals ; Deoxyribonucleic acid ; Deposits ; DNA ; Electron microscopy ; Emission analysis ; Field emission microscopy ; Filaments ; Garages ; Gasoline ; granite ; Groundwater ; Groundwater pollution ; Historical structures ; Hyphae ; Isotope composition ; Microbial activity ; Microorganisms ; Mineral deposits ; Minerals ; moonmilk ; Morphology ; needle‐fibre calcite ; New records ; Pollution sources ; Scanning electron microscopy ; Service stations ; Soil ; Soil contamination ; Spring water ; Stable isotopes ; Submarine pipelines ; Tunnels ; Urban areas ; Wastewater ; Water pollution ; Weathering</subject><ispartof>Sedimentology, 2018-08, Vol.65 (5), p.1482-1503</ispartof><rights>2017 The Authors. Sedimentology © 2017 International Association of Sedimentologists</rights><rights>Journal compilation © 2018 International Association of Sedimentologists</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3551-4576c7cd269f140eaf53b14a32dfd8c68b11b46c8703daedf8107b6330358b743</citedby><cites>FETCH-LOGICAL-a3551-4576c7cd269f140eaf53b14a32dfd8c68b11b46c8703daedf8107b6330358b743</cites><orcidid>0000-0002-0553-8470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsed.12431$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsed.12431$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Miller, Ana Z.</creatorcontrib><creatorcontrib>Garcia‐Sanchez, Angela M.</creatorcontrib><creatorcontrib>Martin‐Sanchez, Pedro M.</creatorcontrib><creatorcontrib>Costa Pereira, Manuel F.</creatorcontrib><creatorcontrib>Spangenberg, Jorge E.</creatorcontrib><creatorcontrib>Jurado, Valme</creatorcontrib><creatorcontrib>Dionísio, Amelia</creatorcontrib><creatorcontrib>Afonso, Maria J.</creatorcontrib><creatorcontrib>Iglé sias Chaminé, Helder I.</creatorcontrib><creatorcontrib>Hermosin, Bernardo</creatorcontrib><creatorcontrib>Saiz‐Jimenez, Cesareo</creatorcontrib><creatorcontrib>Kwiecien, Ola</creatorcontrib><title>Origin of abundant moonmilk deposits in a subsurface granitic environment</title><title>Sedimentology</title><description>Subsurface granitic environments are scarce and poorly investigated. A multi‐disciplinary approach was used to characterize the abundant moonmilk deposits and associated microbial communities coating the granite walls of the 16th Century Paranhos spring water tunnel in Porto city (north‐west Portugal). It is possible that this study is the first record of moonmilk in an urban subsurface granitic environment. The morphology and texture, mineralogical composition, stable isotope composition and microbial diversity of moonmilk deposits have been studied to infer the processes of moonmilk formation. These whitish secondary mineral deposits are composed of very fine needle‐fibre calcite crystals with different morphologies and density. Calcified filaments of fungal hyphae or bacteria were distinguished by field emission scanning electron microscopy. Stable isotope analysis revealed a meteoric origin of the needle‐fibre calcite, with an important contribution of atmospheric CO2, soil respiration and HCO3− from weathering of Ca‐bearing minerals. The DNA‐based analyses revealed the presence of micro‐organisms related to urban contamination, including Actinobacteria, mainly represented by Pseudonocardia hispaniensis, Thaumarchaeota and Ascomycota, dominated by Cladosporium. This microbial composition is consistent with groundwater pollution and contamination sources of the overlying urban area, including garages, petrol stations and wastewater pipeline leakage, showing that the Paranhos tunnel is greatly perturbed by anthropogenic activities. Whether the identified micro‐organisms are involved in the formation of the needle‐fibre calcite or not is difficult to demonstrate, but this study evidenced both abiotic and biogenic genesis for the calcite moonmilk in this subsurface granitic environment.</description><subject>Abundance</subject><subject>Anthropogenic factors</subject><subject>Bacteria</subject><subject>Biomineralization</subject><subject>Calcite</subject><subject>Carbon dioxide</subject><subject>carbonate precipitation</subject><subject>Contamination</subject><subject>Crystals</subject><subject>Deoxyribonucleic acid</subject><subject>Deposits</subject><subject>DNA</subject><subject>Electron microscopy</subject><subject>Emission analysis</subject><subject>Field emission microscopy</subject><subject>Filaments</subject><subject>Garages</subject><subject>Gasoline</subject><subject>granite</subject><subject>Groundwater</subject><subject>Groundwater pollution</subject><subject>Historical structures</subject><subject>Hyphae</subject><subject>Isotope composition</subject><subject>Microbial activity</subject><subject>Microorganisms</subject><subject>Mineral deposits</subject><subject>Minerals</subject><subject>moonmilk</subject><subject>Morphology</subject><subject>needle‐fibre calcite</subject><subject>New records</subject><subject>Pollution sources</subject><subject>Scanning electron microscopy</subject><subject>Service stations</subject><subject>Soil</subject><subject>Soil contamination</subject><subject>Spring water</subject><subject>Stable isotopes</subject><subject>Submarine pipelines</subject><subject>Tunnels</subject><subject>Urban areas</subject><subject>Wastewater</subject><subject>Water pollution</subject><subject>Weathering</subject><issn>0037-0746</issn><issn>1365-3091</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10D1PwzAQBmALgUQpDPwDS0wMaX2xYycjKl-VKnUAZsvxR-XSOsVOQP33GMLKLbc87530InQNZAZ55smaGZSMwgmaAOVVQUkDp2hCCBUFEYyfo4uUtoQAZ3UzQct19BsfcOewaodgVOjxvuvC3u_esbGHLvk-4QwUTkObhuiUtngTVfC919iGTx-ztqG_RGdO7ZK9-ttT9Pb48Lp4Llbrp-XiblUoWlVQsEpwLbQpeeOAEatcRVtgipbGmVrzugVoGde1INQoa1wNRLScUkKruhWMTtHNePcQu4_Bpl5uuyGG_FKWJIcazqDO6nZUOnYpRevkIfq9ikcJRP40JXNT8repbOej_fI7e_wfypeH-zHxDRJBadI</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Miller, Ana Z.</creator><creator>Garcia‐Sanchez, Angela M.</creator><creator>Martin‐Sanchez, Pedro M.</creator><creator>Costa Pereira, Manuel F.</creator><creator>Spangenberg, Jorge E.</creator><creator>Jurado, Valme</creator><creator>Dionísio, Amelia</creator><creator>Afonso, Maria J.</creator><creator>Iglé sias Chaminé, Helder I.</creator><creator>Hermosin, Bernardo</creator><creator>Saiz‐Jimenez, Cesareo</creator><creator>Kwiecien, Ola</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0553-8470</orcidid></search><sort><creationdate>201808</creationdate><title>Origin of abundant moonmilk deposits in a subsurface granitic environment</title><author>Miller, Ana Z. ; Garcia‐Sanchez, Angela M. ; Martin‐Sanchez, Pedro M. ; Costa Pereira, Manuel F. ; Spangenberg, Jorge E. ; Jurado, Valme ; Dionísio, Amelia ; Afonso, Maria J. ; Iglé sias Chaminé, Helder I. ; Hermosin, Bernardo ; Saiz‐Jimenez, Cesareo ; Kwiecien, Ola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3551-4576c7cd269f140eaf53b14a32dfd8c68b11b46c8703daedf8107b6330358b743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Abundance</topic><topic>Anthropogenic factors</topic><topic>Bacteria</topic><topic>Biomineralization</topic><topic>Calcite</topic><topic>Carbon dioxide</topic><topic>carbonate precipitation</topic><topic>Contamination</topic><topic>Crystals</topic><topic>Deoxyribonucleic acid</topic><topic>Deposits</topic><topic>DNA</topic><topic>Electron microscopy</topic><topic>Emission analysis</topic><topic>Field emission microscopy</topic><topic>Filaments</topic><topic>Garages</topic><topic>Gasoline</topic><topic>granite</topic><topic>Groundwater</topic><topic>Groundwater pollution</topic><topic>Historical structures</topic><topic>Hyphae</topic><topic>Isotope composition</topic><topic>Microbial activity</topic><topic>Microorganisms</topic><topic>Mineral deposits</topic><topic>Minerals</topic><topic>moonmilk</topic><topic>Morphology</topic><topic>needle‐fibre calcite</topic><topic>New records</topic><topic>Pollution sources</topic><topic>Scanning electron microscopy</topic><topic>Service stations</topic><topic>Soil</topic><topic>Soil contamination</topic><topic>Spring water</topic><topic>Stable isotopes</topic><topic>Submarine pipelines</topic><topic>Tunnels</topic><topic>Urban areas</topic><topic>Wastewater</topic><topic>Water pollution</topic><topic>Weathering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Ana Z.</creatorcontrib><creatorcontrib>Garcia‐Sanchez, Angela M.</creatorcontrib><creatorcontrib>Martin‐Sanchez, Pedro M.</creatorcontrib><creatorcontrib>Costa Pereira, Manuel F.</creatorcontrib><creatorcontrib>Spangenberg, Jorge E.</creatorcontrib><creatorcontrib>Jurado, Valme</creatorcontrib><creatorcontrib>Dionísio, Amelia</creatorcontrib><creatorcontrib>Afonso, Maria J.</creatorcontrib><creatorcontrib>Iglé sias Chaminé, Helder I.</creatorcontrib><creatorcontrib>Hermosin, Bernardo</creatorcontrib><creatorcontrib>Saiz‐Jimenez, Cesareo</creatorcontrib><creatorcontrib>Kwiecien, Ola</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Sedimentology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Ana Z.</au><au>Garcia‐Sanchez, Angela M.</au><au>Martin‐Sanchez, Pedro M.</au><au>Costa Pereira, Manuel F.</au><au>Spangenberg, Jorge E.</au><au>Jurado, Valme</au><au>Dionísio, Amelia</au><au>Afonso, Maria J.</au><au>Iglé sias Chaminé, Helder I.</au><au>Hermosin, Bernardo</au><au>Saiz‐Jimenez, Cesareo</au><au>Kwiecien, Ola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of abundant moonmilk deposits in a subsurface granitic environment</atitle><jtitle>Sedimentology</jtitle><date>2018-08</date><risdate>2018</risdate><volume>65</volume><issue>5</issue><spage>1482</spage><epage>1503</epage><pages>1482-1503</pages><issn>0037-0746</issn><eissn>1365-3091</eissn><abstract>Subsurface granitic environments are scarce and poorly investigated. A multi‐disciplinary approach was used to characterize the abundant moonmilk deposits and associated microbial communities coating the granite walls of the 16th Century Paranhos spring water tunnel in Porto city (north‐west Portugal). It is possible that this study is the first record of moonmilk in an urban subsurface granitic environment. The morphology and texture, mineralogical composition, stable isotope composition and microbial diversity of moonmilk deposits have been studied to infer the processes of moonmilk formation. These whitish secondary mineral deposits are composed of very fine needle‐fibre calcite crystals with different morphologies and density. Calcified filaments of fungal hyphae or bacteria were distinguished by field emission scanning electron microscopy. Stable isotope analysis revealed a meteoric origin of the needle‐fibre calcite, with an important contribution of atmospheric CO2, soil respiration and HCO3− from weathering of Ca‐bearing minerals. The DNA‐based analyses revealed the presence of micro‐organisms related to urban contamination, including Actinobacteria, mainly represented by Pseudonocardia hispaniensis, Thaumarchaeota and Ascomycota, dominated by Cladosporium. This microbial composition is consistent with groundwater pollution and contamination sources of the overlying urban area, including garages, petrol stations and wastewater pipeline leakage, showing that the Paranhos tunnel is greatly perturbed by anthropogenic activities. Whether the identified micro‐organisms are involved in the formation of the needle‐fibre calcite or not is difficult to demonstrate, but this study evidenced both abiotic and biogenic genesis for the calcite moonmilk in this subsurface granitic environment.</abstract><cop>Madrid</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/sed.12431</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-0553-8470</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-0746 |
ispartof | Sedimentology, 2018-08, Vol.65 (5), p.1482-1503 |
issn | 0037-0746 1365-3091 |
language | eng |
recordid | cdi_proquest_journals_2070396418 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Abundance Anthropogenic factors Bacteria Biomineralization Calcite Carbon dioxide carbonate precipitation Contamination Crystals Deoxyribonucleic acid Deposits DNA Electron microscopy Emission analysis Field emission microscopy Filaments Garages Gasoline granite Groundwater Groundwater pollution Historical structures Hyphae Isotope composition Microbial activity Microorganisms Mineral deposits Minerals moonmilk Morphology needle‐fibre calcite New records Pollution sources Scanning electron microscopy Service stations Soil Soil contamination Spring water Stable isotopes Submarine pipelines Tunnels Urban areas Wastewater Water pollution Weathering |
title | Origin of abundant moonmilk deposits in a subsurface granitic environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20abundant%20moonmilk%20deposits%20in%20a%20subsurface%20granitic%20environment&rft.jtitle=Sedimentology&rft.au=Miller,%20Ana%20Z.&rft.date=2018-08&rft.volume=65&rft.issue=5&rft.spage=1482&rft.epage=1503&rft.pages=1482-1503&rft.issn=0037-0746&rft.eissn=1365-3091&rft_id=info:doi/10.1111/sed.12431&rft_dat=%3Cproquest_cross%3E2070396418%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070396418&rft_id=info:pmid/&rfr_iscdi=true |