How Conditioning on Posttreatment Variables Can Ruin Your Experiment and What to Do about It
In principle, experiments offer a straightforward method for social scientists to accurately estimate causal effects. However, scholars often unwittingly distort treatment effect estimates by conditioning on variables that could be affected by their experimental manipulation. Typical examples includ...
Gespeichert in:
Veröffentlicht in: | American journal of political science 2018-07, Vol.62 (3), p.760-775 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 775 |
---|---|
container_issue | 3 |
container_start_page | 760 |
container_title | American journal of political science |
container_volume | 62 |
creator | Montgomery, Jacob M. Nyhan, Brendan Torres, Michelle |
description | In principle, experiments offer a straightforward method for social scientists to accurately estimate causal effects. However, scholars often unwittingly distort treatment effect estimates by conditioning on variables that could be affected by their experimental manipulation. Typical examples include controlling for posttreatment variables in statistical models, eliminating observations based on posttreatment criteria, or subsetting the data based on posttreatment variables. Though these modeling choices are intended to address common problems encountered when conducting experiments, they can bias estimates of causal effects. Moreover, problems associated with conditioning on posttreatment variables remain largely unrecognized in the field, which we show frequently publishes experimental studies using these practices in our discipline's most prestigious journals. We demonstrate the severity of experimental posttreatment bias analytically and document the magnitude of the potential distortions it induces using visualizations and reanalyses of real-world data. We conclude by providing applied researchers with recommendations for best practice. |
doi_str_mv | 10.1111/ajps.12357 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2070144623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26598780</jstor_id><sourcerecordid>26598780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3597-8daf8af2bcc13cddc47a4cff7ecf04214ace64c032beaa42c55b05ee1adea20d3</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFYv3oUFb0LqfjbJscRqKwWLnwhCmGw2mlB36-6G2v_e1KpH5_IY-L2Zx0PomJIB7eYcmqUfUMZlvIN6VAoSyZTEu6hHSMoimUi-jw68b0i3i5T30MvErnBmTVmH2pravGJr8Nz6EJyG8K5NwI_gaigW2uMMDL5ta4Ofbevw-HOpXf2NgCnx0xsEHCy-sBgK2wY8DYdor4KF10c_2kcPl-P7bBLNbq6m2WgWKS7TOEpKqBKoWKEU5aoslYhBqKqKtaqIYFSA0kOhCGeFBhBMSVkQqTWFUgMjJe-j0-3dpbMfrfYhb7qApnuZMxITKsSQ8Y4621LKWe-drvJlFx_cOqck37SXb9rLv9vrYLqFV_VCr_8h89H1_O7Xc7L1ND5Y9-dhQ5kmcUL4FwOjfRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070144623</pqid></control><display><type>article</type><title>How Conditioning on Posttreatment Variables Can Ruin Your Experiment and What to Do about It</title><source>Worldwide Political Science Abstracts</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Montgomery, Jacob M. ; Nyhan, Brendan ; Torres, Michelle</creator><creatorcontrib>Montgomery, Jacob M. ; Nyhan, Brendan ; Torres, Michelle</creatorcontrib><description>In principle, experiments offer a straightforward method for social scientists to accurately estimate causal effects. However, scholars often unwittingly distort treatment effect estimates by conditioning on variables that could be affected by their experimental manipulation. Typical examples include controlling for posttreatment variables in statistical models, eliminating observations based on posttreatment criteria, or subsetting the data based on posttreatment variables. Though these modeling choices are intended to address common problems encountered when conducting experiments, they can bias estimates of causal effects. Moreover, problems associated with conditioning on posttreatment variables remain largely unrecognized in the field, which we show frequently publishes experimental studies using these practices in our discipline's most prestigious journals. We demonstrate the severity of experimental posttreatment bias analytically and document the magnitude of the potential distortions it induces using visualizations and reanalyses of real-world data. We conclude by providing applied researchers with recommendations for best practice.</description><identifier>ISSN: 0092-5853</identifier><identifier>EISSN: 1540-5907</identifier><identifier>DOI: 10.1111/ajps.12357</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Academic disciplines ; AJPS WORKSHOP ; Best practice ; Bias ; Conditioning ; Criteria ; Experiments ; Intellectuals ; Manipulation ; Social scientists ; Variables</subject><ispartof>American journal of political science, 2018-07, Vol.62 (3), p.760-775</ispartof><rights>2018 Midwest Political Science Association</rights><rights>2018, Midwest Political Science Association</rights><rights>2018 by the Midwest Political Science Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3597-8daf8af2bcc13cddc47a4cff7ecf04214ace64c032beaa42c55b05ee1adea20d3</citedby><cites>FETCH-LOGICAL-c3597-8daf8af2bcc13cddc47a4cff7ecf04214ace64c032beaa42c55b05ee1adea20d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26598780$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26598780$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids></links><search><creatorcontrib>Montgomery, Jacob M.</creatorcontrib><creatorcontrib>Nyhan, Brendan</creatorcontrib><creatorcontrib>Torres, Michelle</creatorcontrib><title>How Conditioning on Posttreatment Variables Can Ruin Your Experiment and What to Do about It</title><title>American journal of political science</title><description>In principle, experiments offer a straightforward method for social scientists to accurately estimate causal effects. However, scholars often unwittingly distort treatment effect estimates by conditioning on variables that could be affected by their experimental manipulation. Typical examples include controlling for posttreatment variables in statistical models, eliminating observations based on posttreatment criteria, or subsetting the data based on posttreatment variables. Though these modeling choices are intended to address common problems encountered when conducting experiments, they can bias estimates of causal effects. Moreover, problems associated with conditioning on posttreatment variables remain largely unrecognized in the field, which we show frequently publishes experimental studies using these practices in our discipline's most prestigious journals. We demonstrate the severity of experimental posttreatment bias analytically and document the magnitude of the potential distortions it induces using visualizations and reanalyses of real-world data. We conclude by providing applied researchers with recommendations for best practice.</description><subject>Academic disciplines</subject><subject>AJPS WORKSHOP</subject><subject>Best practice</subject><subject>Bias</subject><subject>Conditioning</subject><subject>Criteria</subject><subject>Experiments</subject><subject>Intellectuals</subject><subject>Manipulation</subject><subject>Social scientists</subject><subject>Variables</subject><issn>0092-5853</issn><issn>1540-5907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><recordid>eNp9kM1Lw0AQxRdRsFYv3oUFb0LqfjbJscRqKwWLnwhCmGw2mlB36-6G2v_e1KpH5_IY-L2Zx0PomJIB7eYcmqUfUMZlvIN6VAoSyZTEu6hHSMoimUi-jw68b0i3i5T30MvErnBmTVmH2pravGJr8Nz6EJyG8K5NwI_gaigW2uMMDL5ta4Ofbevw-HOpXf2NgCnx0xsEHCy-sBgK2wY8DYdor4KF10c_2kcPl-P7bBLNbq6m2WgWKS7TOEpKqBKoWKEU5aoslYhBqKqKtaqIYFSA0kOhCGeFBhBMSVkQqTWFUgMjJe-j0-3dpbMfrfYhb7qApnuZMxITKsSQ8Y4621LKWe-drvJlFx_cOqck37SXb9rLv9vrYLqFV_VCr_8h89H1_O7Xc7L1ND5Y9-dhQ5kmcUL4FwOjfRo</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Montgomery, Jacob M.</creator><creator>Nyhan, Brendan</creator><creator>Torres, Michelle</creator><general>Wiley Subscription Services, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UB</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20180701</creationdate><title>How Conditioning on Posttreatment Variables Can Ruin Your Experiment and What to Do about It</title><author>Montgomery, Jacob M. ; Nyhan, Brendan ; Torres, Michelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3597-8daf8af2bcc13cddc47a4cff7ecf04214ace64c032beaa42c55b05ee1adea20d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Academic disciplines</topic><topic>AJPS WORKSHOP</topic><topic>Best practice</topic><topic>Bias</topic><topic>Conditioning</topic><topic>Criteria</topic><topic>Experiments</topic><topic>Intellectuals</topic><topic>Manipulation</topic><topic>Social scientists</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montgomery, Jacob M.</creatorcontrib><creatorcontrib>Nyhan, Brendan</creatorcontrib><creatorcontrib>Torres, Michelle</creatorcontrib><collection>CrossRef</collection><collection>Worldwide Political Science Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>American journal of political science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montgomery, Jacob M.</au><au>Nyhan, Brendan</au><au>Torres, Michelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Conditioning on Posttreatment Variables Can Ruin Your Experiment and What to Do about It</atitle><jtitle>American journal of political science</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>62</volume><issue>3</issue><spage>760</spage><epage>775</epage><pages>760-775</pages><issn>0092-5853</issn><eissn>1540-5907</eissn><abstract>In principle, experiments offer a straightforward method for social scientists to accurately estimate causal effects. However, scholars often unwittingly distort treatment effect estimates by conditioning on variables that could be affected by their experimental manipulation. Typical examples include controlling for posttreatment variables in statistical models, eliminating observations based on posttreatment criteria, or subsetting the data based on posttreatment variables. Though these modeling choices are intended to address common problems encountered when conducting experiments, they can bias estimates of causal effects. Moreover, problems associated with conditioning on posttreatment variables remain largely unrecognized in the field, which we show frequently publishes experimental studies using these practices in our discipline's most prestigious journals. We demonstrate the severity of experimental posttreatment bias analytically and document the magnitude of the potential distortions it induces using visualizations and reanalyses of real-world data. We conclude by providing applied researchers with recommendations for best practice.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ajps.12357</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-5853 |
ispartof | American journal of political science, 2018-07, Vol.62 (3), p.760-775 |
issn | 0092-5853 1540-5907 |
language | eng |
recordid | cdi_proquest_journals_2070144623 |
source | Worldwide Political Science Abstracts; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing |
subjects | Academic disciplines AJPS WORKSHOP Best practice Bias Conditioning Criteria Experiments Intellectuals Manipulation Social scientists Variables |
title | How Conditioning on Posttreatment Variables Can Ruin Your Experiment and What to Do about It |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A48%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Conditioning%20on%20Posttreatment%20Variables%20Can%20Ruin%20Your%20Experiment%20and%20What%20to%20Do%20about%20It&rft.jtitle=American%20journal%20of%20political%20science&rft.au=Montgomery,%20Jacob%20M.&rft.date=2018-07-01&rft.volume=62&rft.issue=3&rft.spage=760&rft.epage=775&rft.pages=760-775&rft.issn=0092-5853&rft.eissn=1540-5907&rft_id=info:doi/10.1111/ajps.12357&rft_dat=%3Cjstor_proqu%3E26598780%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070144623&rft_id=info:pmid/&rft_jstor_id=26598780&rfr_iscdi=true |