How Conditioning on Posttreatment Variables Can Ruin Your Experiment and What to Do about It

In principle, experiments offer a straightforward method for social scientists to accurately estimate causal effects. However, scholars often unwittingly distort treatment effect estimates by conditioning on variables that could be affected by their experimental manipulation. Typical examples includ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of political science 2018-07, Vol.62 (3), p.760-775
Hauptverfasser: Montgomery, Jacob M., Nyhan, Brendan, Torres, Michelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 775
container_issue 3
container_start_page 760
container_title American journal of political science
container_volume 62
creator Montgomery, Jacob M.
Nyhan, Brendan
Torres, Michelle
description In principle, experiments offer a straightforward method for social scientists to accurately estimate causal effects. However, scholars often unwittingly distort treatment effect estimates by conditioning on variables that could be affected by their experimental manipulation. Typical examples include controlling for posttreatment variables in statistical models, eliminating observations based on posttreatment criteria, or subsetting the data based on posttreatment variables. Though these modeling choices are intended to address common problems encountered when conducting experiments, they can bias estimates of causal effects. Moreover, problems associated with conditioning on posttreatment variables remain largely unrecognized in the field, which we show frequently publishes experimental studies using these practices in our discipline's most prestigious journals. We demonstrate the severity of experimental posttreatment bias analytically and document the magnitude of the potential distortions it induces using visualizations and reanalyses of real-world data. We conclude by providing applied researchers with recommendations for best practice.
doi_str_mv 10.1111/ajps.12357
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2070144623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26598780</jstor_id><sourcerecordid>26598780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3597-8daf8af2bcc13cddc47a4cff7ecf04214ace64c032beaa42c55b05ee1adea20d3</originalsourceid><addsrcrecordid>eNp9kM1Lw0AQxRdRsFYv3oUFb0LqfjbJscRqKwWLnwhCmGw2mlB36-6G2v_e1KpH5_IY-L2Zx0PomJIB7eYcmqUfUMZlvIN6VAoSyZTEu6hHSMoimUi-jw68b0i3i5T30MvErnBmTVmH2pravGJr8Nz6EJyG8K5NwI_gaigW2uMMDL5ta4Ofbevw-HOpXf2NgCnx0xsEHCy-sBgK2wY8DYdor4KF10c_2kcPl-P7bBLNbq6m2WgWKS7TOEpKqBKoWKEU5aoslYhBqKqKtaqIYFSA0kOhCGeFBhBMSVkQqTWFUgMjJe-j0-3dpbMfrfYhb7qApnuZMxITKsSQ8Y4621LKWe-drvJlFx_cOqck37SXb9rLv9vrYLqFV_VCr_8h89H1_O7Xc7L1ND5Y9-dhQ5kmcUL4FwOjfRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070144623</pqid></control><display><type>article</type><title>How Conditioning on Posttreatment Variables Can Ruin Your Experiment and What to Do about It</title><source>Worldwide Political Science Abstracts</source><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Montgomery, Jacob M. ; Nyhan, Brendan ; Torres, Michelle</creator><creatorcontrib>Montgomery, Jacob M. ; Nyhan, Brendan ; Torres, Michelle</creatorcontrib><description>In principle, experiments offer a straightforward method for social scientists to accurately estimate causal effects. However, scholars often unwittingly distort treatment effect estimates by conditioning on variables that could be affected by their experimental manipulation. Typical examples include controlling for posttreatment variables in statistical models, eliminating observations based on posttreatment criteria, or subsetting the data based on posttreatment variables. Though these modeling choices are intended to address common problems encountered when conducting experiments, they can bias estimates of causal effects. Moreover, problems associated with conditioning on posttreatment variables remain largely unrecognized in the field, which we show frequently publishes experimental studies using these practices in our discipline's most prestigious journals. We demonstrate the severity of experimental posttreatment bias analytically and document the magnitude of the potential distortions it induces using visualizations and reanalyses of real-world data. We conclude by providing applied researchers with recommendations for best practice.</description><identifier>ISSN: 0092-5853</identifier><identifier>EISSN: 1540-5907</identifier><identifier>DOI: 10.1111/ajps.12357</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Academic disciplines ; AJPS WORKSHOP ; Best practice ; Bias ; Conditioning ; Criteria ; Experiments ; Intellectuals ; Manipulation ; Social scientists ; Variables</subject><ispartof>American journal of political science, 2018-07, Vol.62 (3), p.760-775</ispartof><rights>2018 Midwest Political Science Association</rights><rights>2018, Midwest Political Science Association</rights><rights>2018 by the Midwest Political Science Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3597-8daf8af2bcc13cddc47a4cff7ecf04214ace64c032beaa42c55b05ee1adea20d3</citedby><cites>FETCH-LOGICAL-c3597-8daf8af2bcc13cddc47a4cff7ecf04214ace64c032beaa42c55b05ee1adea20d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26598780$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26598780$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1417,27924,27925,45574,45575,58017,58250</link.rule.ids></links><search><creatorcontrib>Montgomery, Jacob M.</creatorcontrib><creatorcontrib>Nyhan, Brendan</creatorcontrib><creatorcontrib>Torres, Michelle</creatorcontrib><title>How Conditioning on Posttreatment Variables Can Ruin Your Experiment and What to Do about It</title><title>American journal of political science</title><description>In principle, experiments offer a straightforward method for social scientists to accurately estimate causal effects. However, scholars often unwittingly distort treatment effect estimates by conditioning on variables that could be affected by their experimental manipulation. Typical examples include controlling for posttreatment variables in statistical models, eliminating observations based on posttreatment criteria, or subsetting the data based on posttreatment variables. Though these modeling choices are intended to address common problems encountered when conducting experiments, they can bias estimates of causal effects. Moreover, problems associated with conditioning on posttreatment variables remain largely unrecognized in the field, which we show frequently publishes experimental studies using these practices in our discipline's most prestigious journals. We demonstrate the severity of experimental posttreatment bias analytically and document the magnitude of the potential distortions it induces using visualizations and reanalyses of real-world data. We conclude by providing applied researchers with recommendations for best practice.</description><subject>Academic disciplines</subject><subject>AJPS WORKSHOP</subject><subject>Best practice</subject><subject>Bias</subject><subject>Conditioning</subject><subject>Criteria</subject><subject>Experiments</subject><subject>Intellectuals</subject><subject>Manipulation</subject><subject>Social scientists</subject><subject>Variables</subject><issn>0092-5853</issn><issn>1540-5907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>7UB</sourceid><recordid>eNp9kM1Lw0AQxRdRsFYv3oUFb0LqfjbJscRqKwWLnwhCmGw2mlB36-6G2v_e1KpH5_IY-L2Zx0PomJIB7eYcmqUfUMZlvIN6VAoSyZTEu6hHSMoimUi-jw68b0i3i5T30MvErnBmTVmH2pravGJr8Nz6EJyG8K5NwI_gaigW2uMMDL5ta4Ofbevw-HOpXf2NgCnx0xsEHCy-sBgK2wY8DYdor4KF10c_2kcPl-P7bBLNbq6m2WgWKS7TOEpKqBKoWKEU5aoslYhBqKqKtaqIYFSA0kOhCGeFBhBMSVkQqTWFUgMjJe-j0-3dpbMfrfYhb7qApnuZMxITKsSQ8Y4621LKWe-drvJlFx_cOqck37SXb9rLv9vrYLqFV_VCr_8h89H1_O7Xc7L1ND5Y9-dhQ5kmcUL4FwOjfRo</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Montgomery, Jacob M.</creator><creator>Nyhan, Brendan</creator><creator>Torres, Michelle</creator><general>Wiley Subscription Services, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UB</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20180701</creationdate><title>How Conditioning on Posttreatment Variables Can Ruin Your Experiment and What to Do about It</title><author>Montgomery, Jacob M. ; Nyhan, Brendan ; Torres, Michelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3597-8daf8af2bcc13cddc47a4cff7ecf04214ace64c032beaa42c55b05ee1adea20d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Academic disciplines</topic><topic>AJPS WORKSHOP</topic><topic>Best practice</topic><topic>Bias</topic><topic>Conditioning</topic><topic>Criteria</topic><topic>Experiments</topic><topic>Intellectuals</topic><topic>Manipulation</topic><topic>Social scientists</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montgomery, Jacob M.</creatorcontrib><creatorcontrib>Nyhan, Brendan</creatorcontrib><creatorcontrib>Torres, Michelle</creatorcontrib><collection>CrossRef</collection><collection>Worldwide Political Science Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>American journal of political science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montgomery, Jacob M.</au><au>Nyhan, Brendan</au><au>Torres, Michelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Conditioning on Posttreatment Variables Can Ruin Your Experiment and What to Do about It</atitle><jtitle>American journal of political science</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>62</volume><issue>3</issue><spage>760</spage><epage>775</epage><pages>760-775</pages><issn>0092-5853</issn><eissn>1540-5907</eissn><abstract>In principle, experiments offer a straightforward method for social scientists to accurately estimate causal effects. However, scholars often unwittingly distort treatment effect estimates by conditioning on variables that could be affected by their experimental manipulation. Typical examples include controlling for posttreatment variables in statistical models, eliminating observations based on posttreatment criteria, or subsetting the data based on posttreatment variables. Though these modeling choices are intended to address common problems encountered when conducting experiments, they can bias estimates of causal effects. Moreover, problems associated with conditioning on posttreatment variables remain largely unrecognized in the field, which we show frequently publishes experimental studies using these practices in our discipline's most prestigious journals. We demonstrate the severity of experimental posttreatment bias analytically and document the magnitude of the potential distortions it induces using visualizations and reanalyses of real-world data. We conclude by providing applied researchers with recommendations for best practice.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ajps.12357</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-5853
ispartof American journal of political science, 2018-07, Vol.62 (3), p.760-775
issn 0092-5853
1540-5907
language eng
recordid cdi_proquest_journals_2070144623
source Worldwide Political Science Abstracts; Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing
subjects Academic disciplines
AJPS WORKSHOP
Best practice
Bias
Conditioning
Criteria
Experiments
Intellectuals
Manipulation
Social scientists
Variables
title How Conditioning on Posttreatment Variables Can Ruin Your Experiment and What to Do about It
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A48%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Conditioning%20on%20Posttreatment%20Variables%20Can%20Ruin%20Your%20Experiment%20and%20What%20to%20Do%20about%20It&rft.jtitle=American%20journal%20of%20political%20science&rft.au=Montgomery,%20Jacob%20M.&rft.date=2018-07-01&rft.volume=62&rft.issue=3&rft.spage=760&rft.epage=775&rft.pages=760-775&rft.issn=0092-5853&rft.eissn=1540-5907&rft_id=info:doi/10.1111/ajps.12357&rft_dat=%3Cjstor_proqu%3E26598780%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070144623&rft_id=info:pmid/&rft_jstor_id=26598780&rfr_iscdi=true