Molecular Dynamics Simulations of Cross‐Linked Phenolic Resins Using a United‐Atom Model

A new molecular modeling algorithm for conducting large‐scale molecular dynamics simulation studies of cross‐linked phenolic resins is developed using a united‐atom model. A phenol–formaldehyde polycondensation system is simulated by a pseudoreaction algorithm taking into consideration (i) the diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular theory and simulations 2018-07, Vol.27 (4), p.n/a
Hauptverfasser: Izumi, Atsushi, Shudo, Yasuyuki, Hagita, Katsumi, Shibayama, Mitsuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Macromolecular theory and simulations
container_volume 27
creator Izumi, Atsushi
Shudo, Yasuyuki
Hagita, Katsumi
Shibayama, Mitsuhiro
description A new molecular modeling algorithm for conducting large‐scale molecular dynamics simulation studies of cross‐linked phenolic resins is developed using a united‐atom model. A phenol–formaldehyde polycondensation system is simulated by a pseudoreaction algorithm taking into consideration (i) the difference in the experimental reaction rate constants at ortho and para positions of phenolic units and (ii) the geometry of the reactants. To avoid formation of locally strained cross‐linked structures that can be generated in a typical cutoff‐distance‐based reaction scheme, a geometrical judgment constraint is applied in the reaction procedure. With this algorithm, cross‐linked network structures of phenolic resins with a maximum conversion (α) of 0.90 are obtained from 10 000 phenols. The density and the tensile modulus of the structure with α of 0.90 at 300 K are 1.2 g cm−3 and 5.4 GPa, respectively. This is in good agreement with experimental values. The strain‐free, highly cross‐linked network structures of phenolic resins exhibit a higher density and tensile modulus compared with structures generated in the absence of the geometrical cutoff. This result demonstrates that the geometrical judgment constraint can effectively avoid the formation of distorted and strained local structures and is necessary for accurate modeling of highly cross‐linked phenolic resins. A new molecular modeling algorithm for conducting large‐scale molecular dynamics simulation studies of cross‐linked phenolic resins is developed using a united‐atom model.
doi_str_mv 10.1002/mats.201700103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2070144132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070144132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4203-e758d1e74f3d8126a2ead0c31b6e8819b4ae3ceadeae4794b1b0207afc18959d3</originalsourceid><addsrcrecordid>eNqFkM9Kw0AQxoMoWKtXzwueU2d2t032WOpfaFFsexPCZjPRrUlWsynSm4_gM_okbqno0cvM8PH7Zpgvik4RBgjAz2vd-QEHTAAQxF7UwyHHWChU-2EGzmMUUh5GR96vAECphPeix5mryKwr3bKLTaNrazyb2zoInXWNZ65kk9Z5__XxObXNCxXs_pkaV1nDHsjbQCxDfWKaLRvbURG4cedqNnMFVcfRQakrTyc_vR8try4Xk5t4end9OxlPYyM5iJiSYVogJbIURYp8pDnpAozAfERpiiqXmoQJGmmSiZI55sAh0aXBVA1VIfrR2W7va-ve1uS7bOXWbRNOZoEDlBIFD9RgR5ntQy2V2Wtra91uMoRsm2C2TTD7TTAY1M7wbiva_ENns_Fi_uf9BgJNd3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070144132</pqid></control><display><type>article</type><title>Molecular Dynamics Simulations of Cross‐Linked Phenolic Resins Using a United‐Atom Model</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Izumi, Atsushi ; Shudo, Yasuyuki ; Hagita, Katsumi ; Shibayama, Mitsuhiro</creator><creatorcontrib>Izumi, Atsushi ; Shudo, Yasuyuki ; Hagita, Katsumi ; Shibayama, Mitsuhiro</creatorcontrib><description>A new molecular modeling algorithm for conducting large‐scale molecular dynamics simulation studies of cross‐linked phenolic resins is developed using a united‐atom model. A phenol–formaldehyde polycondensation system is simulated by a pseudoreaction algorithm taking into consideration (i) the difference in the experimental reaction rate constants at ortho and para positions of phenolic units and (ii) the geometry of the reactants. To avoid formation of locally strained cross‐linked structures that can be generated in a typical cutoff‐distance‐based reaction scheme, a geometrical judgment constraint is applied in the reaction procedure. With this algorithm, cross‐linked network structures of phenolic resins with a maximum conversion (α) of 0.90 are obtained from 10 000 phenols. The density and the tensile modulus of the structure with α of 0.90 at 300 K are 1.2 g cm−3 and 5.4 GPa, respectively. This is in good agreement with experimental values. The strain‐free, highly cross‐linked network structures of phenolic resins exhibit a higher density and tensile modulus compared with structures generated in the absence of the geometrical cutoff. This result demonstrates that the geometrical judgment constraint can effectively avoid the formation of distorted and strained local structures and is necessary for accurate modeling of highly cross‐linked phenolic resins. A new molecular modeling algorithm for conducting large‐scale molecular dynamics simulation studies of cross‐linked phenolic resins is developed using a united‐atom model.</description><identifier>ISSN: 1022-1344</identifier><identifier>EISSN: 1521-3919</identifier><identifier>DOI: 10.1002/mats.201700103</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; coarse‐grained molecular dynamics simulation ; Computer simulation ; cross‐linked phenolic resins ; Density ; modeling algorithm ; Modelling ; Modulus of elasticity ; Molecular chains ; Molecular dynamics ; Molecular modelling ; Phenolic compounds ; Phenolic resins ; Phenols ; Polymers ; Rate constants ; Resins</subject><ispartof>Macromolecular theory and simulations, 2018-07, Vol.27 (4), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4203-e758d1e74f3d8126a2ead0c31b6e8819b4ae3ceadeae4794b1b0207afc18959d3</citedby><cites>FETCH-LOGICAL-c4203-e758d1e74f3d8126a2ead0c31b6e8819b4ae3ceadeae4794b1b0207afc18959d3</cites><orcidid>0000-0001-8213-7032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmats.201700103$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmats.201700103$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Izumi, Atsushi</creatorcontrib><creatorcontrib>Shudo, Yasuyuki</creatorcontrib><creatorcontrib>Hagita, Katsumi</creatorcontrib><creatorcontrib>Shibayama, Mitsuhiro</creatorcontrib><title>Molecular Dynamics Simulations of Cross‐Linked Phenolic Resins Using a United‐Atom Model</title><title>Macromolecular theory and simulations</title><description>A new molecular modeling algorithm for conducting large‐scale molecular dynamics simulation studies of cross‐linked phenolic resins is developed using a united‐atom model. A phenol–formaldehyde polycondensation system is simulated by a pseudoreaction algorithm taking into consideration (i) the difference in the experimental reaction rate constants at ortho and para positions of phenolic units and (ii) the geometry of the reactants. To avoid formation of locally strained cross‐linked structures that can be generated in a typical cutoff‐distance‐based reaction scheme, a geometrical judgment constraint is applied in the reaction procedure. With this algorithm, cross‐linked network structures of phenolic resins with a maximum conversion (α) of 0.90 are obtained from 10 000 phenols. The density and the tensile modulus of the structure with α of 0.90 at 300 K are 1.2 g cm−3 and 5.4 GPa, respectively. This is in good agreement with experimental values. The strain‐free, highly cross‐linked network structures of phenolic resins exhibit a higher density and tensile modulus compared with structures generated in the absence of the geometrical cutoff. This result demonstrates that the geometrical judgment constraint can effectively avoid the formation of distorted and strained local structures and is necessary for accurate modeling of highly cross‐linked phenolic resins. A new molecular modeling algorithm for conducting large‐scale molecular dynamics simulation studies of cross‐linked phenolic resins is developed using a united‐atom model.</description><subject>Algorithms</subject><subject>coarse‐grained molecular dynamics simulation</subject><subject>Computer simulation</subject><subject>cross‐linked phenolic resins</subject><subject>Density</subject><subject>modeling algorithm</subject><subject>Modelling</subject><subject>Modulus of elasticity</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>Molecular modelling</subject><subject>Phenolic compounds</subject><subject>Phenolic resins</subject><subject>Phenols</subject><subject>Polymers</subject><subject>Rate constants</subject><subject>Resins</subject><issn>1022-1344</issn><issn>1521-3919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM9Kw0AQxoMoWKtXzwueU2d2t032WOpfaFFsexPCZjPRrUlWsynSm4_gM_okbqno0cvM8PH7Zpgvik4RBgjAz2vd-QEHTAAQxF7UwyHHWChU-2EGzmMUUh5GR96vAECphPeix5mryKwr3bKLTaNrazyb2zoInXWNZ65kk9Z5__XxObXNCxXs_pkaV1nDHsjbQCxDfWKaLRvbURG4cedqNnMFVcfRQakrTyc_vR8try4Xk5t4end9OxlPYyM5iJiSYVogJbIURYp8pDnpAozAfERpiiqXmoQJGmmSiZI55sAh0aXBVA1VIfrR2W7va-ve1uS7bOXWbRNOZoEDlBIFD9RgR5ntQy2V2Wtra91uMoRsm2C2TTD7TTAY1M7wbiva_ENns_Fi_uf9BgJNd3g</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Izumi, Atsushi</creator><creator>Shudo, Yasuyuki</creator><creator>Hagita, Katsumi</creator><creator>Shibayama, Mitsuhiro</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-8213-7032</orcidid></search><sort><creationdate>201807</creationdate><title>Molecular Dynamics Simulations of Cross‐Linked Phenolic Resins Using a United‐Atom Model</title><author>Izumi, Atsushi ; Shudo, Yasuyuki ; Hagita, Katsumi ; Shibayama, Mitsuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4203-e758d1e74f3d8126a2ead0c31b6e8819b4ae3ceadeae4794b1b0207afc18959d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>coarse‐grained molecular dynamics simulation</topic><topic>Computer simulation</topic><topic>cross‐linked phenolic resins</topic><topic>Density</topic><topic>modeling algorithm</topic><topic>Modelling</topic><topic>Modulus of elasticity</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>Molecular modelling</topic><topic>Phenolic compounds</topic><topic>Phenolic resins</topic><topic>Phenols</topic><topic>Polymers</topic><topic>Rate constants</topic><topic>Resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izumi, Atsushi</creatorcontrib><creatorcontrib>Shudo, Yasuyuki</creatorcontrib><creatorcontrib>Hagita, Katsumi</creatorcontrib><creatorcontrib>Shibayama, Mitsuhiro</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Macromolecular theory and simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izumi, Atsushi</au><au>Shudo, Yasuyuki</au><au>Hagita, Katsumi</au><au>Shibayama, Mitsuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulations of Cross‐Linked Phenolic Resins Using a United‐Atom Model</atitle><jtitle>Macromolecular theory and simulations</jtitle><date>2018-07</date><risdate>2018</risdate><volume>27</volume><issue>4</issue><epage>n/a</epage><issn>1022-1344</issn><eissn>1521-3919</eissn><abstract>A new molecular modeling algorithm for conducting large‐scale molecular dynamics simulation studies of cross‐linked phenolic resins is developed using a united‐atom model. A phenol–formaldehyde polycondensation system is simulated by a pseudoreaction algorithm taking into consideration (i) the difference in the experimental reaction rate constants at ortho and para positions of phenolic units and (ii) the geometry of the reactants. To avoid formation of locally strained cross‐linked structures that can be generated in a typical cutoff‐distance‐based reaction scheme, a geometrical judgment constraint is applied in the reaction procedure. With this algorithm, cross‐linked network structures of phenolic resins with a maximum conversion (α) of 0.90 are obtained from 10 000 phenols. The density and the tensile modulus of the structure with α of 0.90 at 300 K are 1.2 g cm−3 and 5.4 GPa, respectively. This is in good agreement with experimental values. The strain‐free, highly cross‐linked network structures of phenolic resins exhibit a higher density and tensile modulus compared with structures generated in the absence of the geometrical cutoff. This result demonstrates that the geometrical judgment constraint can effectively avoid the formation of distorted and strained local structures and is necessary for accurate modeling of highly cross‐linked phenolic resins. A new molecular modeling algorithm for conducting large‐scale molecular dynamics simulation studies of cross‐linked phenolic resins is developed using a united‐atom model.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mats.201700103</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8213-7032</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-1344
ispartof Macromolecular theory and simulations, 2018-07, Vol.27 (4), p.n/a
issn 1022-1344
1521-3919
language eng
recordid cdi_proquest_journals_2070144132
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
coarse‐grained molecular dynamics simulation
Computer simulation
cross‐linked phenolic resins
Density
modeling algorithm
Modelling
Modulus of elasticity
Molecular chains
Molecular dynamics
Molecular modelling
Phenolic compounds
Phenolic resins
Phenols
Polymers
Rate constants
Resins
title Molecular Dynamics Simulations of Cross‐Linked Phenolic Resins Using a United‐Atom Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulations%20of%20Cross%E2%80%90Linked%20Phenolic%20Resins%20Using%20a%20United%E2%80%90Atom%20Model&rft.jtitle=Macromolecular%20theory%20and%20simulations&rft.au=Izumi,%20Atsushi&rft.date=2018-07&rft.volume=27&rft.issue=4&rft.epage=n/a&rft.issn=1022-1344&rft.eissn=1521-3919&rft_id=info:doi/10.1002/mats.201700103&rft_dat=%3Cproquest_cross%3E2070144132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070144132&rft_id=info:pmid/&rfr_iscdi=true