Molecular Dynamics Simulations of Cross‐Linked Phenolic Resins Using a United‐Atom Model
A new molecular modeling algorithm for conducting large‐scale molecular dynamics simulation studies of cross‐linked phenolic resins is developed using a united‐atom model. A phenol–formaldehyde polycondensation system is simulated by a pseudoreaction algorithm taking into consideration (i) the diffe...
Gespeichert in:
Veröffentlicht in: | Macromolecular theory and simulations 2018-07, Vol.27 (4), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Macromolecular theory and simulations |
container_volume | 27 |
creator | Izumi, Atsushi Shudo, Yasuyuki Hagita, Katsumi Shibayama, Mitsuhiro |
description | A new molecular modeling algorithm for conducting large‐scale molecular dynamics simulation studies of cross‐linked phenolic resins is developed using a united‐atom model. A phenol–formaldehyde polycondensation system is simulated by a pseudoreaction algorithm taking into consideration (i) the difference in the experimental reaction rate constants at ortho and para positions of phenolic units and (ii) the geometry of the reactants. To avoid formation of locally strained cross‐linked structures that can be generated in a typical cutoff‐distance‐based reaction scheme, a geometrical judgment constraint is applied in the reaction procedure. With this algorithm, cross‐linked network structures of phenolic resins with a maximum conversion (α) of 0.90 are obtained from 10 000 phenols. The density and the tensile modulus of the structure with α of 0.90 at 300 K are 1.2 g cm−3 and 5.4 GPa, respectively. This is in good agreement with experimental values. The strain‐free, highly cross‐linked network structures of phenolic resins exhibit a higher density and tensile modulus compared with structures generated in the absence of the geometrical cutoff. This result demonstrates that the geometrical judgment constraint can effectively avoid the formation of distorted and strained local structures and is necessary for accurate modeling of highly cross‐linked phenolic resins.
A new molecular modeling algorithm for conducting large‐scale molecular dynamics simulation studies of cross‐linked phenolic resins is developed using a united‐atom model. |
doi_str_mv | 10.1002/mats.201700103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2070144132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070144132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4203-e758d1e74f3d8126a2ead0c31b6e8819b4ae3ceadeae4794b1b0207afc18959d3</originalsourceid><addsrcrecordid>eNqFkM9Kw0AQxoMoWKtXzwueU2d2t032WOpfaFFsexPCZjPRrUlWsynSm4_gM_okbqno0cvM8PH7Zpgvik4RBgjAz2vd-QEHTAAQxF7UwyHHWChU-2EGzmMUUh5GR96vAECphPeix5mryKwr3bKLTaNrazyb2zoInXWNZ65kk9Z5__XxObXNCxXs_pkaV1nDHsjbQCxDfWKaLRvbURG4cedqNnMFVcfRQakrTyc_vR8try4Xk5t4end9OxlPYyM5iJiSYVogJbIURYp8pDnpAozAfERpiiqXmoQJGmmSiZI55sAh0aXBVA1VIfrR2W7va-ve1uS7bOXWbRNOZoEDlBIFD9RgR5ntQy2V2Wtra91uMoRsm2C2TTD7TTAY1M7wbiva_ENns_Fi_uf9BgJNd3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070144132</pqid></control><display><type>article</type><title>Molecular Dynamics Simulations of Cross‐Linked Phenolic Resins Using a United‐Atom Model</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Izumi, Atsushi ; Shudo, Yasuyuki ; Hagita, Katsumi ; Shibayama, Mitsuhiro</creator><creatorcontrib>Izumi, Atsushi ; Shudo, Yasuyuki ; Hagita, Katsumi ; Shibayama, Mitsuhiro</creatorcontrib><description>A new molecular modeling algorithm for conducting large‐scale molecular dynamics simulation studies of cross‐linked phenolic resins is developed using a united‐atom model. A phenol–formaldehyde polycondensation system is simulated by a pseudoreaction algorithm taking into consideration (i) the difference in the experimental reaction rate constants at ortho and para positions of phenolic units and (ii) the geometry of the reactants. To avoid formation of locally strained cross‐linked structures that can be generated in a typical cutoff‐distance‐based reaction scheme, a geometrical judgment constraint is applied in the reaction procedure. With this algorithm, cross‐linked network structures of phenolic resins with a maximum conversion (α) of 0.90 are obtained from 10 000 phenols. The density and the tensile modulus of the structure with α of 0.90 at 300 K are 1.2 g cm−3 and 5.4 GPa, respectively. This is in good agreement with experimental values. The strain‐free, highly cross‐linked network structures of phenolic resins exhibit a higher density and tensile modulus compared with structures generated in the absence of the geometrical cutoff. This result demonstrates that the geometrical judgment constraint can effectively avoid the formation of distorted and strained local structures and is necessary for accurate modeling of highly cross‐linked phenolic resins.
A new molecular modeling algorithm for conducting large‐scale molecular dynamics simulation studies of cross‐linked phenolic resins is developed using a united‐atom model.</description><identifier>ISSN: 1022-1344</identifier><identifier>EISSN: 1521-3919</identifier><identifier>DOI: 10.1002/mats.201700103</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; coarse‐grained molecular dynamics simulation ; Computer simulation ; cross‐linked phenolic resins ; Density ; modeling algorithm ; Modelling ; Modulus of elasticity ; Molecular chains ; Molecular dynamics ; Molecular modelling ; Phenolic compounds ; Phenolic resins ; Phenols ; Polymers ; Rate constants ; Resins</subject><ispartof>Macromolecular theory and simulations, 2018-07, Vol.27 (4), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4203-e758d1e74f3d8126a2ead0c31b6e8819b4ae3ceadeae4794b1b0207afc18959d3</citedby><cites>FETCH-LOGICAL-c4203-e758d1e74f3d8126a2ead0c31b6e8819b4ae3ceadeae4794b1b0207afc18959d3</cites><orcidid>0000-0001-8213-7032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmats.201700103$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmats.201700103$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Izumi, Atsushi</creatorcontrib><creatorcontrib>Shudo, Yasuyuki</creatorcontrib><creatorcontrib>Hagita, Katsumi</creatorcontrib><creatorcontrib>Shibayama, Mitsuhiro</creatorcontrib><title>Molecular Dynamics Simulations of Cross‐Linked Phenolic Resins Using a United‐Atom Model</title><title>Macromolecular theory and simulations</title><description>A new molecular modeling algorithm for conducting large‐scale molecular dynamics simulation studies of cross‐linked phenolic resins is developed using a united‐atom model. A phenol–formaldehyde polycondensation system is simulated by a pseudoreaction algorithm taking into consideration (i) the difference in the experimental reaction rate constants at ortho and para positions of phenolic units and (ii) the geometry of the reactants. To avoid formation of locally strained cross‐linked structures that can be generated in a typical cutoff‐distance‐based reaction scheme, a geometrical judgment constraint is applied in the reaction procedure. With this algorithm, cross‐linked network structures of phenolic resins with a maximum conversion (α) of 0.90 are obtained from 10 000 phenols. The density and the tensile modulus of the structure with α of 0.90 at 300 K are 1.2 g cm−3 and 5.4 GPa, respectively. This is in good agreement with experimental values. The strain‐free, highly cross‐linked network structures of phenolic resins exhibit a higher density and tensile modulus compared with structures generated in the absence of the geometrical cutoff. This result demonstrates that the geometrical judgment constraint can effectively avoid the formation of distorted and strained local structures and is necessary for accurate modeling of highly cross‐linked phenolic resins.
A new molecular modeling algorithm for conducting large‐scale molecular dynamics simulation studies of cross‐linked phenolic resins is developed using a united‐atom model.</description><subject>Algorithms</subject><subject>coarse‐grained molecular dynamics simulation</subject><subject>Computer simulation</subject><subject>cross‐linked phenolic resins</subject><subject>Density</subject><subject>modeling algorithm</subject><subject>Modelling</subject><subject>Modulus of elasticity</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>Molecular modelling</subject><subject>Phenolic compounds</subject><subject>Phenolic resins</subject><subject>Phenols</subject><subject>Polymers</subject><subject>Rate constants</subject><subject>Resins</subject><issn>1022-1344</issn><issn>1521-3919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM9Kw0AQxoMoWKtXzwueU2d2t032WOpfaFFsexPCZjPRrUlWsynSm4_gM_okbqno0cvM8PH7Zpgvik4RBgjAz2vd-QEHTAAQxF7UwyHHWChU-2EGzmMUUh5GR96vAECphPeix5mryKwr3bKLTaNrazyb2zoInXWNZ65kk9Z5__XxObXNCxXs_pkaV1nDHsjbQCxDfWKaLRvbURG4cedqNnMFVcfRQakrTyc_vR8try4Xk5t4end9OxlPYyM5iJiSYVogJbIURYp8pDnpAozAfERpiiqXmoQJGmmSiZI55sAh0aXBVA1VIfrR2W7va-ve1uS7bOXWbRNOZoEDlBIFD9RgR5ntQy2V2Wtra91uMoRsm2C2TTD7TTAY1M7wbiva_ENns_Fi_uf9BgJNd3g</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Izumi, Atsushi</creator><creator>Shudo, Yasuyuki</creator><creator>Hagita, Katsumi</creator><creator>Shibayama, Mitsuhiro</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-8213-7032</orcidid></search><sort><creationdate>201807</creationdate><title>Molecular Dynamics Simulations of Cross‐Linked Phenolic Resins Using a United‐Atom Model</title><author>Izumi, Atsushi ; Shudo, Yasuyuki ; Hagita, Katsumi ; Shibayama, Mitsuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4203-e758d1e74f3d8126a2ead0c31b6e8819b4ae3ceadeae4794b1b0207afc18959d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>coarse‐grained molecular dynamics simulation</topic><topic>Computer simulation</topic><topic>cross‐linked phenolic resins</topic><topic>Density</topic><topic>modeling algorithm</topic><topic>Modelling</topic><topic>Modulus of elasticity</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>Molecular modelling</topic><topic>Phenolic compounds</topic><topic>Phenolic resins</topic><topic>Phenols</topic><topic>Polymers</topic><topic>Rate constants</topic><topic>Resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izumi, Atsushi</creatorcontrib><creatorcontrib>Shudo, Yasuyuki</creatorcontrib><creatorcontrib>Hagita, Katsumi</creatorcontrib><creatorcontrib>Shibayama, Mitsuhiro</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Macromolecular theory and simulations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izumi, Atsushi</au><au>Shudo, Yasuyuki</au><au>Hagita, Katsumi</au><au>Shibayama, Mitsuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulations of Cross‐Linked Phenolic Resins Using a United‐Atom Model</atitle><jtitle>Macromolecular theory and simulations</jtitle><date>2018-07</date><risdate>2018</risdate><volume>27</volume><issue>4</issue><epage>n/a</epage><issn>1022-1344</issn><eissn>1521-3919</eissn><abstract>A new molecular modeling algorithm for conducting large‐scale molecular dynamics simulation studies of cross‐linked phenolic resins is developed using a united‐atom model. A phenol–formaldehyde polycondensation system is simulated by a pseudoreaction algorithm taking into consideration (i) the difference in the experimental reaction rate constants at ortho and para positions of phenolic units and (ii) the geometry of the reactants. To avoid formation of locally strained cross‐linked structures that can be generated in a typical cutoff‐distance‐based reaction scheme, a geometrical judgment constraint is applied in the reaction procedure. With this algorithm, cross‐linked network structures of phenolic resins with a maximum conversion (α) of 0.90 are obtained from 10 000 phenols. The density and the tensile modulus of the structure with α of 0.90 at 300 K are 1.2 g cm−3 and 5.4 GPa, respectively. This is in good agreement with experimental values. The strain‐free, highly cross‐linked network structures of phenolic resins exhibit a higher density and tensile modulus compared with structures generated in the absence of the geometrical cutoff. This result demonstrates that the geometrical judgment constraint can effectively avoid the formation of distorted and strained local structures and is necessary for accurate modeling of highly cross‐linked phenolic resins.
A new molecular modeling algorithm for conducting large‐scale molecular dynamics simulation studies of cross‐linked phenolic resins is developed using a united‐atom model.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mats.201700103</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8213-7032</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1344 |
ispartof | Macromolecular theory and simulations, 2018-07, Vol.27 (4), p.n/a |
issn | 1022-1344 1521-3919 |
language | eng |
recordid | cdi_proquest_journals_2070144132 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms coarse‐grained molecular dynamics simulation Computer simulation cross‐linked phenolic resins Density modeling algorithm Modelling Modulus of elasticity Molecular chains Molecular dynamics Molecular modelling Phenolic compounds Phenolic resins Phenols Polymers Rate constants Resins |
title | Molecular Dynamics Simulations of Cross‐Linked Phenolic Resins Using a United‐Atom Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulations%20of%20Cross%E2%80%90Linked%20Phenolic%20Resins%20Using%20a%20United%E2%80%90Atom%20Model&rft.jtitle=Macromolecular%20theory%20and%20simulations&rft.au=Izumi,%20Atsushi&rft.date=2018-07&rft.volume=27&rft.issue=4&rft.epage=n/a&rft.issn=1022-1344&rft.eissn=1521-3919&rft_id=info:doi/10.1002/mats.201700103&rft_dat=%3Cproquest_cross%3E2070144132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070144132&rft_id=info:pmid/&rfr_iscdi=true |