Eigenvalue topology optimization via efficient multilevel solution of the frequency response
Summary The article presents an efficient solution method for structural topology optimization aimed at maximizing the fundamental frequency of vibration. Nowadays, this is still a challenging problem mainly because of the high computational cost required by spectral analyses. The proposed method re...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2018-08, Vol.115 (7), p.872-892 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 892 |
---|---|
container_issue | 7 |
container_start_page | 872 |
container_title | International journal for numerical methods in engineering |
container_volume | 115 |
creator | Ferrari, Federico Lazarov, Boyan S. Sigmund, Ole |
description | Summary
The article presents an efficient solution method for structural topology optimization aimed at maximizing the fundamental frequency of vibration. Nowadays, this is still a challenging problem mainly because of the high computational cost required by spectral analyses. The proposed method relies on replacing the eigenvalue problem with a frequency response one, which can be tuned and efficiently solved by a multilevel procedure. Connections of the method with multigrid eigenvalue solvers are discussed in details. Several applications demonstrating more than 90% savings of the computational time are presented as well. |
doi_str_mv | 10.1002/nme.5829 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2070022513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070022513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3279-fcc319e91222645615721778bbc0b4077230bc2627d6402213cad4182d55b2ac3</originalsourceid><addsrcrecordid>eNp10LFOwzAQBmALgUQpSDyCJRaWFPsSx8mIqlKQCiywIVmJeymukjjYSVF4etyWlekGfzrf_xNyzdmMMwZ3bYMzkUF-Qiac5TJiwOQpmYSnPBJ5xs_JhfdbxjgXLJ6Qj4XZYLsr6gFpbztb281IbdebxvwUvbEt3ZmCYlUZbbDtaTPUvalxhzX1th4Owla0_0RaOfwasNUjdeg723q8JGdVUXu8-ptT8v6weJs_RqvX5dP8fhXpGGQeVVrHPMecA0CaiJQLCVzKrCw1KxMmJcSs1JCCXKcJA-CxLtYJz2AtRAmFjqfk5ri3czac4Hu1tYNrw5cqpA_RQfA4qNuj0s5677BSnTNN4UbFmdp3p0J3at9doNGRfoes479OvTwvDv4XnblwQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070022513</pqid></control><display><type>article</type><title>Eigenvalue topology optimization via efficient multilevel solution of the frequency response</title><source>Access via Wiley Online Library</source><creator>Ferrari, Federico ; Lazarov, Boyan S. ; Sigmund, Ole</creator><creatorcontrib>Ferrari, Federico ; Lazarov, Boyan S. ; Sigmund, Ole</creatorcontrib><description>Summary
The article presents an efficient solution method for structural topology optimization aimed at maximizing the fundamental frequency of vibration. Nowadays, this is still a challenging problem mainly because of the high computational cost required by spectral analyses. The proposed method relies on replacing the eigenvalue problem with a frequency response one, which can be tuned and efficiently solved by a multilevel procedure. Connections of the method with multigrid eigenvalue solvers are discussed in details. Several applications demonstrating more than 90% savings of the computational time are presented as well.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.5829</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Computational efficiency ; Computing time ; Cost analysis ; eigenvalue optimization ; Eigenvalues ; fast solvers ; Frequency response ; large‐scale problems ; Resonant frequencies ; Solvers ; Topology optimization ; vibrations</subject><ispartof>International journal for numerical methods in engineering, 2018-08, Vol.115 (7), p.872-892</ispartof><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><rights>2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3279-fcc319e91222645615721778bbc0b4077230bc2627d6402213cad4182d55b2ac3</citedby><cites>FETCH-LOGICAL-c3279-fcc319e91222645615721778bbc0b4077230bc2627d6402213cad4182d55b2ac3</cites><orcidid>0000-0003-0344-7249 ; 0000-0003-3863-6621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.5829$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.5829$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ferrari, Federico</creatorcontrib><creatorcontrib>Lazarov, Boyan S.</creatorcontrib><creatorcontrib>Sigmund, Ole</creatorcontrib><title>Eigenvalue topology optimization via efficient multilevel solution of the frequency response</title><title>International journal for numerical methods in engineering</title><description>Summary
The article presents an efficient solution method for structural topology optimization aimed at maximizing the fundamental frequency of vibration. Nowadays, this is still a challenging problem mainly because of the high computational cost required by spectral analyses. The proposed method relies on replacing the eigenvalue problem with a frequency response one, which can be tuned and efficiently solved by a multilevel procedure. Connections of the method with multigrid eigenvalue solvers are discussed in details. Several applications demonstrating more than 90% savings of the computational time are presented as well.</description><subject>Computational efficiency</subject><subject>Computing time</subject><subject>Cost analysis</subject><subject>eigenvalue optimization</subject><subject>Eigenvalues</subject><subject>fast solvers</subject><subject>Frequency response</subject><subject>large‐scale problems</subject><subject>Resonant frequencies</subject><subject>Solvers</subject><subject>Topology optimization</subject><subject>vibrations</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10LFOwzAQBmALgUQpSDyCJRaWFPsSx8mIqlKQCiywIVmJeymukjjYSVF4etyWlekGfzrf_xNyzdmMMwZ3bYMzkUF-Qiac5TJiwOQpmYSnPBJ5xs_JhfdbxjgXLJ6Qj4XZYLsr6gFpbztb281IbdebxvwUvbEt3ZmCYlUZbbDtaTPUvalxhzX1th4Owla0_0RaOfwasNUjdeg723q8JGdVUXu8-ptT8v6weJs_RqvX5dP8fhXpGGQeVVrHPMecA0CaiJQLCVzKrCw1KxMmJcSs1JCCXKcJA-CxLtYJz2AtRAmFjqfk5ri3czac4Hu1tYNrw5cqpA_RQfA4qNuj0s5677BSnTNN4UbFmdp3p0J3at9doNGRfoes479OvTwvDv4XnblwQA</recordid><startdate>20180817</startdate><enddate>20180817</enddate><creator>Ferrari, Federico</creator><creator>Lazarov, Boyan S.</creator><creator>Sigmund, Ole</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0344-7249</orcidid><orcidid>https://orcid.org/0000-0003-3863-6621</orcidid></search><sort><creationdate>20180817</creationdate><title>Eigenvalue topology optimization via efficient multilevel solution of the frequency response</title><author>Ferrari, Federico ; Lazarov, Boyan S. ; Sigmund, Ole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3279-fcc319e91222645615721778bbc0b4077230bc2627d6402213cad4182d55b2ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational efficiency</topic><topic>Computing time</topic><topic>Cost analysis</topic><topic>eigenvalue optimization</topic><topic>Eigenvalues</topic><topic>fast solvers</topic><topic>Frequency response</topic><topic>large‐scale problems</topic><topic>Resonant frequencies</topic><topic>Solvers</topic><topic>Topology optimization</topic><topic>vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrari, Federico</creatorcontrib><creatorcontrib>Lazarov, Boyan S.</creatorcontrib><creatorcontrib>Sigmund, Ole</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrari, Federico</au><au>Lazarov, Boyan S.</au><au>Sigmund, Ole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalue topology optimization via efficient multilevel solution of the frequency response</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2018-08-17</date><risdate>2018</risdate><volume>115</volume><issue>7</issue><spage>872</spage><epage>892</epage><pages>872-892</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary
The article presents an efficient solution method for structural topology optimization aimed at maximizing the fundamental frequency of vibration. Nowadays, this is still a challenging problem mainly because of the high computational cost required by spectral analyses. The proposed method relies on replacing the eigenvalue problem with a frequency response one, which can be tuned and efficiently solved by a multilevel procedure. Connections of the method with multigrid eigenvalue solvers are discussed in details. Several applications demonstrating more than 90% savings of the computational time are presented as well.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nme.5829</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-0344-7249</orcidid><orcidid>https://orcid.org/0000-0003-3863-6621</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2018-08, Vol.115 (7), p.872-892 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2070022513 |
source | Access via Wiley Online Library |
subjects | Computational efficiency Computing time Cost analysis eigenvalue optimization Eigenvalues fast solvers Frequency response large‐scale problems Resonant frequencies Solvers Topology optimization vibrations |
title | Eigenvalue topology optimization via efficient multilevel solution of the frequency response |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalue%20topology%20optimization%20via%20efficient%20multilevel%20solution%20of%20the%20frequency%20response&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Ferrari,%20Federico&rft.date=2018-08-17&rft.volume=115&rft.issue=7&rft.spage=872&rft.epage=892&rft.pages=872-892&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.5829&rft_dat=%3Cproquest_cross%3E2070022513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070022513&rft_id=info:pmid/&rfr_iscdi=true |