Eigenvalue topology optimization via efficient multilevel solution of the frequency response

Summary The article presents an efficient solution method for structural topology optimization aimed at maximizing the fundamental frequency of vibration. Nowadays, this is still a challenging problem mainly because of the high computational cost required by spectral analyses. The proposed method re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2018-08, Vol.115 (7), p.872-892
Hauptverfasser: Ferrari, Federico, Lazarov, Boyan S., Sigmund, Ole
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 892
container_issue 7
container_start_page 872
container_title International journal for numerical methods in engineering
container_volume 115
creator Ferrari, Federico
Lazarov, Boyan S.
Sigmund, Ole
description Summary The article presents an efficient solution method for structural topology optimization aimed at maximizing the fundamental frequency of vibration. Nowadays, this is still a challenging problem mainly because of the high computational cost required by spectral analyses. The proposed method relies on replacing the eigenvalue problem with a frequency response one, which can be tuned and efficiently solved by a multilevel procedure. Connections of the method with multigrid eigenvalue solvers are discussed in details. Several applications demonstrating more than 90% savings of the computational time are presented as well.
doi_str_mv 10.1002/nme.5829
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2070022513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2070022513</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3279-fcc319e91222645615721778bbc0b4077230bc2627d6402213cad4182d55b2ac3</originalsourceid><addsrcrecordid>eNp10LFOwzAQBmALgUQpSDyCJRaWFPsSx8mIqlKQCiywIVmJeymukjjYSVF4etyWlekGfzrf_xNyzdmMMwZ3bYMzkUF-Qiac5TJiwOQpmYSnPBJ5xs_JhfdbxjgXLJ6Qj4XZYLsr6gFpbztb281IbdebxvwUvbEt3ZmCYlUZbbDtaTPUvalxhzX1th4Owla0_0RaOfwasNUjdeg723q8JGdVUXu8-ptT8v6weJs_RqvX5dP8fhXpGGQeVVrHPMecA0CaiJQLCVzKrCw1KxMmJcSs1JCCXKcJA-CxLtYJz2AtRAmFjqfk5ri3czac4Hu1tYNrw5cqpA_RQfA4qNuj0s5677BSnTNN4UbFmdp3p0J3at9doNGRfoes479OvTwvDv4XnblwQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070022513</pqid></control><display><type>article</type><title>Eigenvalue topology optimization via efficient multilevel solution of the frequency response</title><source>Access via Wiley Online Library</source><creator>Ferrari, Federico ; Lazarov, Boyan S. ; Sigmund, Ole</creator><creatorcontrib>Ferrari, Federico ; Lazarov, Boyan S. ; Sigmund, Ole</creatorcontrib><description>Summary The article presents an efficient solution method for structural topology optimization aimed at maximizing the fundamental frequency of vibration. Nowadays, this is still a challenging problem mainly because of the high computational cost required by spectral analyses. The proposed method relies on replacing the eigenvalue problem with a frequency response one, which can be tuned and efficiently solved by a multilevel procedure. Connections of the method with multigrid eigenvalue solvers are discussed in details. Several applications demonstrating more than 90% savings of the computational time are presented as well.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.5829</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Computational efficiency ; Computing time ; Cost analysis ; eigenvalue optimization ; Eigenvalues ; fast solvers ; Frequency response ; large‐scale problems ; Resonant frequencies ; Solvers ; Topology optimization ; vibrations</subject><ispartof>International journal for numerical methods in engineering, 2018-08, Vol.115 (7), p.872-892</ispartof><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><rights>2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3279-fcc319e91222645615721778bbc0b4077230bc2627d6402213cad4182d55b2ac3</citedby><cites>FETCH-LOGICAL-c3279-fcc319e91222645615721778bbc0b4077230bc2627d6402213cad4182d55b2ac3</cites><orcidid>0000-0003-0344-7249 ; 0000-0003-3863-6621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.5829$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.5829$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ferrari, Federico</creatorcontrib><creatorcontrib>Lazarov, Boyan S.</creatorcontrib><creatorcontrib>Sigmund, Ole</creatorcontrib><title>Eigenvalue topology optimization via efficient multilevel solution of the frequency response</title><title>International journal for numerical methods in engineering</title><description>Summary The article presents an efficient solution method for structural topology optimization aimed at maximizing the fundamental frequency of vibration. Nowadays, this is still a challenging problem mainly because of the high computational cost required by spectral analyses. The proposed method relies on replacing the eigenvalue problem with a frequency response one, which can be tuned and efficiently solved by a multilevel procedure. Connections of the method with multigrid eigenvalue solvers are discussed in details. Several applications demonstrating more than 90% savings of the computational time are presented as well.</description><subject>Computational efficiency</subject><subject>Computing time</subject><subject>Cost analysis</subject><subject>eigenvalue optimization</subject><subject>Eigenvalues</subject><subject>fast solvers</subject><subject>Frequency response</subject><subject>large‐scale problems</subject><subject>Resonant frequencies</subject><subject>Solvers</subject><subject>Topology optimization</subject><subject>vibrations</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10LFOwzAQBmALgUQpSDyCJRaWFPsSx8mIqlKQCiywIVmJeymukjjYSVF4etyWlekGfzrf_xNyzdmMMwZ3bYMzkUF-Qiac5TJiwOQpmYSnPBJ5xs_JhfdbxjgXLJ6Qj4XZYLsr6gFpbztb281IbdebxvwUvbEt3ZmCYlUZbbDtaTPUvalxhzX1th4Owla0_0RaOfwasNUjdeg723q8JGdVUXu8-ptT8v6weJs_RqvX5dP8fhXpGGQeVVrHPMecA0CaiJQLCVzKrCw1KxMmJcSs1JCCXKcJA-CxLtYJz2AtRAmFjqfk5ri3czac4Hu1tYNrw5cqpA_RQfA4qNuj0s5677BSnTNN4UbFmdp3p0J3at9doNGRfoes479OvTwvDv4XnblwQA</recordid><startdate>20180817</startdate><enddate>20180817</enddate><creator>Ferrari, Federico</creator><creator>Lazarov, Boyan S.</creator><creator>Sigmund, Ole</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0344-7249</orcidid><orcidid>https://orcid.org/0000-0003-3863-6621</orcidid></search><sort><creationdate>20180817</creationdate><title>Eigenvalue topology optimization via efficient multilevel solution of the frequency response</title><author>Ferrari, Federico ; Lazarov, Boyan S. ; Sigmund, Ole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3279-fcc319e91222645615721778bbc0b4077230bc2627d6402213cad4182d55b2ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computational efficiency</topic><topic>Computing time</topic><topic>Cost analysis</topic><topic>eigenvalue optimization</topic><topic>Eigenvalues</topic><topic>fast solvers</topic><topic>Frequency response</topic><topic>large‐scale problems</topic><topic>Resonant frequencies</topic><topic>Solvers</topic><topic>Topology optimization</topic><topic>vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferrari, Federico</creatorcontrib><creatorcontrib>Lazarov, Boyan S.</creatorcontrib><creatorcontrib>Sigmund, Ole</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferrari, Federico</au><au>Lazarov, Boyan S.</au><au>Sigmund, Ole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalue topology optimization via efficient multilevel solution of the frequency response</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2018-08-17</date><risdate>2018</risdate><volume>115</volume><issue>7</issue><spage>872</spage><epage>892</epage><pages>872-892</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary The article presents an efficient solution method for structural topology optimization aimed at maximizing the fundamental frequency of vibration. Nowadays, this is still a challenging problem mainly because of the high computational cost required by spectral analyses. The proposed method relies on replacing the eigenvalue problem with a frequency response one, which can be tuned and efficiently solved by a multilevel procedure. Connections of the method with multigrid eigenvalue solvers are discussed in details. Several applications demonstrating more than 90% savings of the computational time are presented as well.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nme.5829</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-0344-7249</orcidid><orcidid>https://orcid.org/0000-0003-3863-6621</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2018-08, Vol.115 (7), p.872-892
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2070022513
source Access via Wiley Online Library
subjects Computational efficiency
Computing time
Cost analysis
eigenvalue optimization
Eigenvalues
fast solvers
Frequency response
large‐scale problems
Resonant frequencies
Solvers
Topology optimization
vibrations
title Eigenvalue topology optimization via efficient multilevel solution of the frequency response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T16%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalue%20topology%20optimization%20via%20efficient%20multilevel%20solution%20of%20the%20frequency%20response&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Ferrari,%20Federico&rft.date=2018-08-17&rft.volume=115&rft.issue=7&rft.spage=872&rft.epage=892&rft.pages=872-892&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.5829&rft_dat=%3Cproquest_cross%3E2070022513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070022513&rft_id=info:pmid/&rfr_iscdi=true