Even-parity Boltzmann transport equation applied for response (contributon) flux calculation based on the spatial channel theory

An even parity approach for the detection of main stream channels of response flux inside the material is presented. The product of forward and adjoint flux is called the response flux which plays an important role in assessing the performance of shielding materials. Based on two distinct maximum pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2018-06, Vol.75 (12), p.4378-4396
Hauptverfasser: Yousefi, Mostafa, Zolfaghari, A., Minuchehr, A., Abbassi, M.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4396
container_issue 12
container_start_page 4378
container_title Computers & mathematics with applications (1987)
container_volume 75
creator Yousefi, Mostafa
Zolfaghari, A.
Minuchehr, A.
Abbassi, M.R.
description An even parity approach for the detection of main stream channels of response flux inside the material is presented. The product of forward and adjoint flux is called the response flux which plays an important role in assessing the performance of shielding materials. Based on two distinct maximum principles, even parity forward and adjoint fluxes (ψ and ψ†) are obtained respectively. Weak and strong points of shielding materials can be well understood using the spatial channel theory and this analysis is performed using the even parity Boltzmann transport equation. The PN method as well as the finite element method are employed to approximate the angular and spatial components of the fluxes, respectively. Also, we extend the concept of spatial channel theory to fissile materials. A number of test cases are provided to evaluate the performance of the proposed approach.
doi_str_mv 10.1016/j.camwa.2018.03.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2069972962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089812211830172X</els_id><sourcerecordid>2069972962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-b898578a09e9649efeca2968f9e1efb370c7da895fdca85d173684af5141a6273</originalsourceid><addsrcrecordid>eNp9kEtrGzEQx0VpoG6ST5CLoJfmsK4etlY69NCEvCDQS3sWY-2IyKyljaRN657y0SvHPRcGZpiZ3zz-hFxwtuSMqy_bpYPdL1gKxvWSyWbqHVlw3cuuV0q_Jwumje64EPwD-VjKljG2koItyOvNC8Zughzqnl6lsf7ZQYy0ZohlSrlSfJ6hhhQpTNMYcKA-ZZqxFWNB-tmlWHPYzDXFS-rH-Td1MLp5PDIbKI1oQX1CWqaWhJG6p7YBx0Mu5f0ZOfEwFjz_50_Jz9ubH9f33eP3u4frb4-dk0LVbtPuX_camEGjVgY9OhBGaW-Qo9_Inrl-AG3WfnCg1wPvpdIr8Gu-4qBEL0_Jp-PcKafnGUu12zTn2FZawZQxfZsmWpc8drmcSsno7ZTDDvLecmYPUtutfZPaHqS2TDZTjfp6pLA98BIw2-ICRodDyOiqHVL4L_8X7gyLYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069972962</pqid></control><display><type>article</type><title>Even-parity Boltzmann transport equation applied for response (contributon) flux calculation based on the spatial channel theory</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yousefi, Mostafa ; Zolfaghari, A. ; Minuchehr, A. ; Abbassi, M.R.</creator><creatorcontrib>Yousefi, Mostafa ; Zolfaghari, A. ; Minuchehr, A. ; Abbassi, M.R.</creatorcontrib><description>An even parity approach for the detection of main stream channels of response flux inside the material is presented. The product of forward and adjoint flux is called the response flux which plays an important role in assessing the performance of shielding materials. Based on two distinct maximum principles, even parity forward and adjoint fluxes (ψ and ψ†) are obtained respectively. Weak and strong points of shielding materials can be well understood using the spatial channel theory and this analysis is performed using the even parity Boltzmann transport equation. The PN method as well as the finite element method are employed to approximate the angular and spatial components of the fluxes, respectively. Also, we extend the concept of spatial channel theory to fissile materials. A number of test cases are provided to evaluate the performance of the proposed approach.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2018.03.036</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Boltzmann transport equation ; Chemical reactors ; Contributon transport ; Detector response ; Finite element method ; Fissionable materials ; Fluxes ; Forward and adjoint fluxes ; Mathematical analysis ; Monte Carlo simulation ; Nuclear fission ; Nuclear fuels ; Nuclear physics ; Parity ; Response flux ; Shielding ; Shielding analysis ; Simulation ; Spatial channel theory ; Transport equations</subject><ispartof>Computers &amp; mathematics with applications (1987), 2018-06, Vol.75 (12), p.4378-4396</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-b898578a09e9649efeca2968f9e1efb370c7da895fdca85d173684af5141a6273</cites><orcidid>0000-0003-4726-3601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2018.03.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>Yousefi, Mostafa</creatorcontrib><creatorcontrib>Zolfaghari, A.</creatorcontrib><creatorcontrib>Minuchehr, A.</creatorcontrib><creatorcontrib>Abbassi, M.R.</creatorcontrib><title>Even-parity Boltzmann transport equation applied for response (contributon) flux calculation based on the spatial channel theory</title><title>Computers &amp; mathematics with applications (1987)</title><description>An even parity approach for the detection of main stream channels of response flux inside the material is presented. The product of forward and adjoint flux is called the response flux which plays an important role in assessing the performance of shielding materials. Based on two distinct maximum principles, even parity forward and adjoint fluxes (ψ and ψ†) are obtained respectively. Weak and strong points of shielding materials can be well understood using the spatial channel theory and this analysis is performed using the even parity Boltzmann transport equation. The PN method as well as the finite element method are employed to approximate the angular and spatial components of the fluxes, respectively. Also, we extend the concept of spatial channel theory to fissile materials. A number of test cases are provided to evaluate the performance of the proposed approach.</description><subject>Boltzmann transport equation</subject><subject>Chemical reactors</subject><subject>Contributon transport</subject><subject>Detector response</subject><subject>Finite element method</subject><subject>Fissionable materials</subject><subject>Fluxes</subject><subject>Forward and adjoint fluxes</subject><subject>Mathematical analysis</subject><subject>Monte Carlo simulation</subject><subject>Nuclear fission</subject><subject>Nuclear fuels</subject><subject>Nuclear physics</subject><subject>Parity</subject><subject>Response flux</subject><subject>Shielding</subject><subject>Shielding analysis</subject><subject>Simulation</subject><subject>Spatial channel theory</subject><subject>Transport equations</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrGzEQx0VpoG6ST5CLoJfmsK4etlY69NCEvCDQS3sWY-2IyKyljaRN657y0SvHPRcGZpiZ3zz-hFxwtuSMqy_bpYPdL1gKxvWSyWbqHVlw3cuuV0q_Jwumje64EPwD-VjKljG2koItyOvNC8Zughzqnl6lsf7ZQYy0ZohlSrlSfJ6hhhQpTNMYcKA-ZZqxFWNB-tmlWHPYzDXFS-rH-Td1MLp5PDIbKI1oQX1CWqaWhJG6p7YBx0Mu5f0ZOfEwFjz_50_Jz9ubH9f33eP3u4frb4-dk0LVbtPuX_camEGjVgY9OhBGaW-Qo9_Inrl-AG3WfnCg1wPvpdIr8Gu-4qBEL0_Jp-PcKafnGUu12zTn2FZawZQxfZsmWpc8drmcSsno7ZTDDvLecmYPUtutfZPaHqS2TDZTjfp6pLA98BIw2-ICRodDyOiqHVL4L_8X7gyLYg</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Yousefi, Mostafa</creator><creator>Zolfaghari, A.</creator><creator>Minuchehr, A.</creator><creator>Abbassi, M.R.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4726-3601</orcidid></search><sort><creationdate>20180615</creationdate><title>Even-parity Boltzmann transport equation applied for response (contributon) flux calculation based on the spatial channel theory</title><author>Yousefi, Mostafa ; Zolfaghari, A. ; Minuchehr, A. ; Abbassi, M.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-b898578a09e9649efeca2968f9e1efb370c7da895fdca85d173684af5141a6273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boltzmann transport equation</topic><topic>Chemical reactors</topic><topic>Contributon transport</topic><topic>Detector response</topic><topic>Finite element method</topic><topic>Fissionable materials</topic><topic>Fluxes</topic><topic>Forward and adjoint fluxes</topic><topic>Mathematical analysis</topic><topic>Monte Carlo simulation</topic><topic>Nuclear fission</topic><topic>Nuclear fuels</topic><topic>Nuclear physics</topic><topic>Parity</topic><topic>Response flux</topic><topic>Shielding</topic><topic>Shielding analysis</topic><topic>Simulation</topic><topic>Spatial channel theory</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yousefi, Mostafa</creatorcontrib><creatorcontrib>Zolfaghari, A.</creatorcontrib><creatorcontrib>Minuchehr, A.</creatorcontrib><creatorcontrib>Abbassi, M.R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yousefi, Mostafa</au><au>Zolfaghari, A.</au><au>Minuchehr, A.</au><au>Abbassi, M.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Even-parity Boltzmann transport equation applied for response (contributon) flux calculation based on the spatial channel theory</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2018-06-15</date><risdate>2018</risdate><volume>75</volume><issue>12</issue><spage>4378</spage><epage>4396</epage><pages>4378-4396</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>An even parity approach for the detection of main stream channels of response flux inside the material is presented. The product of forward and adjoint flux is called the response flux which plays an important role in assessing the performance of shielding materials. Based on two distinct maximum principles, even parity forward and adjoint fluxes (ψ and ψ†) are obtained respectively. Weak and strong points of shielding materials can be well understood using the spatial channel theory and this analysis is performed using the even parity Boltzmann transport equation. The PN method as well as the finite element method are employed to approximate the angular and spatial components of the fluxes, respectively. Also, we extend the concept of spatial channel theory to fissile materials. A number of test cases are provided to evaluate the performance of the proposed approach.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2018.03.036</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4726-3601</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2018-06, Vol.75 (12), p.4378-4396
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_journals_2069972962
source Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Boltzmann transport equation
Chemical reactors
Contributon transport
Detector response
Finite element method
Fissionable materials
Fluxes
Forward and adjoint fluxes
Mathematical analysis
Monte Carlo simulation
Nuclear fission
Nuclear fuels
Nuclear physics
Parity
Response flux
Shielding
Shielding analysis
Simulation
Spatial channel theory
Transport equations
title Even-parity Boltzmann transport equation applied for response (contributon) flux calculation based on the spatial channel theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T12%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Even-parity%20Boltzmann%20transport%20equation%20applied%20for%20response%20(contributon)%20flux%20calculation%20based%20on%20the%20spatial%20channel%20theory&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Yousefi,%20Mostafa&rft.date=2018-06-15&rft.volume=75&rft.issue=12&rft.spage=4378&rft.epage=4396&rft.pages=4378-4396&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2018.03.036&rft_dat=%3Cproquest_cross%3E2069972962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069972962&rft_id=info:pmid/&rft_els_id=S089812211830172X&rfr_iscdi=true