Even-parity Boltzmann transport equation applied for response (contributon) flux calculation based on the spatial channel theory
An even parity approach for the detection of main stream channels of response flux inside the material is presented. The product of forward and adjoint flux is called the response flux which plays an important role in assessing the performance of shielding materials. Based on two distinct maximum pr...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2018-06, Vol.75 (12), p.4378-4396 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4396 |
---|---|
container_issue | 12 |
container_start_page | 4378 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 75 |
creator | Yousefi, Mostafa Zolfaghari, A. Minuchehr, A. Abbassi, M.R. |
description | An even parity approach for the detection of main stream channels of response flux inside the material is presented. The product of forward and adjoint flux is called the response flux which plays an important role in assessing the performance of shielding materials. Based on two distinct maximum principles, even parity forward and adjoint fluxes (ψ and ψ†) are obtained respectively. Weak and strong points of shielding materials can be well understood using the spatial channel theory and this analysis is performed using the even parity Boltzmann transport equation. The PN method as well as the finite element method are employed to approximate the angular and spatial components of the fluxes, respectively. Also, we extend the concept of spatial channel theory to fissile materials. A number of test cases are provided to evaluate the performance of the proposed approach. |
doi_str_mv | 10.1016/j.camwa.2018.03.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2069972962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089812211830172X</els_id><sourcerecordid>2069972962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-b898578a09e9649efeca2968f9e1efb370c7da895fdca85d173684af5141a6273</originalsourceid><addsrcrecordid>eNp9kEtrGzEQx0VpoG6ST5CLoJfmsK4etlY69NCEvCDQS3sWY-2IyKyljaRN657y0SvHPRcGZpiZ3zz-hFxwtuSMqy_bpYPdL1gKxvWSyWbqHVlw3cuuV0q_Jwumje64EPwD-VjKljG2koItyOvNC8Zughzqnl6lsf7ZQYy0ZohlSrlSfJ6hhhQpTNMYcKA-ZZqxFWNB-tmlWHPYzDXFS-rH-Td1MLp5PDIbKI1oQX1CWqaWhJG6p7YBx0Mu5f0ZOfEwFjz_50_Jz9ubH9f33eP3u4frb4-dk0LVbtPuX_camEGjVgY9OhBGaW-Qo9_Inrl-AG3WfnCg1wPvpdIr8Gu-4qBEL0_Jp-PcKafnGUu12zTn2FZawZQxfZsmWpc8drmcSsno7ZTDDvLecmYPUtutfZPaHqS2TDZTjfp6pLA98BIw2-ICRodDyOiqHVL4L_8X7gyLYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069972962</pqid></control><display><type>article</type><title>Even-parity Boltzmann transport equation applied for response (contributon) flux calculation based on the spatial channel theory</title><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yousefi, Mostafa ; Zolfaghari, A. ; Minuchehr, A. ; Abbassi, M.R.</creator><creatorcontrib>Yousefi, Mostafa ; Zolfaghari, A. ; Minuchehr, A. ; Abbassi, M.R.</creatorcontrib><description>An even parity approach for the detection of main stream channels of response flux inside the material is presented. The product of forward and adjoint flux is called the response flux which plays an important role in assessing the performance of shielding materials. Based on two distinct maximum principles, even parity forward and adjoint fluxes (ψ and ψ†) are obtained respectively. Weak and strong points of shielding materials can be well understood using the spatial channel theory and this analysis is performed using the even parity Boltzmann transport equation. The PN method as well as the finite element method are employed to approximate the angular and spatial components of the fluxes, respectively. Also, we extend the concept of spatial channel theory to fissile materials. A number of test cases are provided to evaluate the performance of the proposed approach.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2018.03.036</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Boltzmann transport equation ; Chemical reactors ; Contributon transport ; Detector response ; Finite element method ; Fissionable materials ; Fluxes ; Forward and adjoint fluxes ; Mathematical analysis ; Monte Carlo simulation ; Nuclear fission ; Nuclear fuels ; Nuclear physics ; Parity ; Response flux ; Shielding ; Shielding analysis ; Simulation ; Spatial channel theory ; Transport equations</subject><ispartof>Computers & mathematics with applications (1987), 2018-06, Vol.75 (12), p.4378-4396</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-b898578a09e9649efeca2968f9e1efb370c7da895fdca85d173684af5141a6273</cites><orcidid>0000-0003-4726-3601</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2018.03.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>Yousefi, Mostafa</creatorcontrib><creatorcontrib>Zolfaghari, A.</creatorcontrib><creatorcontrib>Minuchehr, A.</creatorcontrib><creatorcontrib>Abbassi, M.R.</creatorcontrib><title>Even-parity Boltzmann transport equation applied for response (contributon) flux calculation based on the spatial channel theory</title><title>Computers & mathematics with applications (1987)</title><description>An even parity approach for the detection of main stream channels of response flux inside the material is presented. The product of forward and adjoint flux is called the response flux which plays an important role in assessing the performance of shielding materials. Based on two distinct maximum principles, even parity forward and adjoint fluxes (ψ and ψ†) are obtained respectively. Weak and strong points of shielding materials can be well understood using the spatial channel theory and this analysis is performed using the even parity Boltzmann transport equation. The PN method as well as the finite element method are employed to approximate the angular and spatial components of the fluxes, respectively. Also, we extend the concept of spatial channel theory to fissile materials. A number of test cases are provided to evaluate the performance of the proposed approach.</description><subject>Boltzmann transport equation</subject><subject>Chemical reactors</subject><subject>Contributon transport</subject><subject>Detector response</subject><subject>Finite element method</subject><subject>Fissionable materials</subject><subject>Fluxes</subject><subject>Forward and adjoint fluxes</subject><subject>Mathematical analysis</subject><subject>Monte Carlo simulation</subject><subject>Nuclear fission</subject><subject>Nuclear fuels</subject><subject>Nuclear physics</subject><subject>Parity</subject><subject>Response flux</subject><subject>Shielding</subject><subject>Shielding analysis</subject><subject>Simulation</subject><subject>Spatial channel theory</subject><subject>Transport equations</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtrGzEQx0VpoG6ST5CLoJfmsK4etlY69NCEvCDQS3sWY-2IyKyljaRN657y0SvHPRcGZpiZ3zz-hFxwtuSMqy_bpYPdL1gKxvWSyWbqHVlw3cuuV0q_Jwumje64EPwD-VjKljG2koItyOvNC8Zughzqnl6lsf7ZQYy0ZohlSrlSfJ6hhhQpTNMYcKA-ZZqxFWNB-tmlWHPYzDXFS-rH-Td1MLp5PDIbKI1oQX1CWqaWhJG6p7YBx0Mu5f0ZOfEwFjz_50_Jz9ubH9f33eP3u4frb4-dk0LVbtPuX_camEGjVgY9OhBGaW-Qo9_Inrl-AG3WfnCg1wPvpdIr8Gu-4qBEL0_Jp-PcKafnGUu12zTn2FZawZQxfZsmWpc8drmcSsno7ZTDDvLecmYPUtutfZPaHqS2TDZTjfp6pLA98BIw2-ICRodDyOiqHVL4L_8X7gyLYg</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Yousefi, Mostafa</creator><creator>Zolfaghari, A.</creator><creator>Minuchehr, A.</creator><creator>Abbassi, M.R.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4726-3601</orcidid></search><sort><creationdate>20180615</creationdate><title>Even-parity Boltzmann transport equation applied for response (contributon) flux calculation based on the spatial channel theory</title><author>Yousefi, Mostafa ; Zolfaghari, A. ; Minuchehr, A. ; Abbassi, M.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-b898578a09e9649efeca2968f9e1efb370c7da895fdca85d173684af5141a6273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boltzmann transport equation</topic><topic>Chemical reactors</topic><topic>Contributon transport</topic><topic>Detector response</topic><topic>Finite element method</topic><topic>Fissionable materials</topic><topic>Fluxes</topic><topic>Forward and adjoint fluxes</topic><topic>Mathematical analysis</topic><topic>Monte Carlo simulation</topic><topic>Nuclear fission</topic><topic>Nuclear fuels</topic><topic>Nuclear physics</topic><topic>Parity</topic><topic>Response flux</topic><topic>Shielding</topic><topic>Shielding analysis</topic><topic>Simulation</topic><topic>Spatial channel theory</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yousefi, Mostafa</creatorcontrib><creatorcontrib>Zolfaghari, A.</creatorcontrib><creatorcontrib>Minuchehr, A.</creatorcontrib><creatorcontrib>Abbassi, M.R.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yousefi, Mostafa</au><au>Zolfaghari, A.</au><au>Minuchehr, A.</au><au>Abbassi, M.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Even-parity Boltzmann transport equation applied for response (contributon) flux calculation based on the spatial channel theory</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2018-06-15</date><risdate>2018</risdate><volume>75</volume><issue>12</issue><spage>4378</spage><epage>4396</epage><pages>4378-4396</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>An even parity approach for the detection of main stream channels of response flux inside the material is presented. The product of forward and adjoint flux is called the response flux which plays an important role in assessing the performance of shielding materials. Based on two distinct maximum principles, even parity forward and adjoint fluxes (ψ and ψ†) are obtained respectively. Weak and strong points of shielding materials can be well understood using the spatial channel theory and this analysis is performed using the even parity Boltzmann transport equation. The PN method as well as the finite element method are employed to approximate the angular and spatial components of the fluxes, respectively. Also, we extend the concept of spatial channel theory to fissile materials. A number of test cases are provided to evaluate the performance of the proposed approach.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2018.03.036</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4726-3601</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2018-06, Vol.75 (12), p.4378-4396 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_journals_2069972962 |
source | Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals |
subjects | Boltzmann transport equation Chemical reactors Contributon transport Detector response Finite element method Fissionable materials Fluxes Forward and adjoint fluxes Mathematical analysis Monte Carlo simulation Nuclear fission Nuclear fuels Nuclear physics Parity Response flux Shielding Shielding analysis Simulation Spatial channel theory Transport equations |
title | Even-parity Boltzmann transport equation applied for response (contributon) flux calculation based on the spatial channel theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T12%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Even-parity%20Boltzmann%20transport%20equation%20applied%20for%20response%20(contributon)%20flux%20calculation%20based%20on%20the%20spatial%20channel%20theory&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Yousefi,%20Mostafa&rft.date=2018-06-15&rft.volume=75&rft.issue=12&rft.spage=4378&rft.epage=4396&rft.pages=4378-4396&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2018.03.036&rft_dat=%3Cproquest_cross%3E2069972962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069972962&rft_id=info:pmid/&rft_els_id=S089812211830172X&rfr_iscdi=true |