An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations

We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B-splines to represent model geometry and compatibl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2018-06, Vol.362, p.264-289
Hauptverfasser: Simpson, R.N., Liu, Z., Vázquez, R., Evans, J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 289
container_issue
container_start_page 264
container_title Journal of computational physics
container_volume 362
creator Simpson, R.N.
Liu, Z.
Vázquez, R.
Evans, J.A.
description We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B-splines to represent model geometry and compatible B-splines to approximate the surface current, and adopts the isogeometric concept in which the basis for analysis is taken directly from CAD (geometry) data. The approach allows for high-order approximations and crucially provides a direct link with CAD data structures that allows for efficient design workflows. After outlining the construction of div- and curl-conforming B-splines defined over 3D surfaces we describe their use with the electric and magnetic field integral equations using a Galerkin formulation. We use Bézier extraction to accelerate the computation of NURBS and B-spline terms and employ H-matrices to provide accelerated computations and memory reduction for the dense matrices that result from the boundary integral discretization. The method is verified using the well known Mie scattering problem posed over a perfectly electrically conducting sphere and the classic NASA almond problem. Finally, we demonstrate the ability of the approach to handle models with complex geometry directly from CAD without mesh generation. •An isogeometric boundary element method for electromagnetic scattering is proposed.•Compatible B-spline approximations used to discretize the electric and magnetic field integral equations are detailed.•The superior accuracy of high order compatible B-spline approximations over traditional approximations is demonstrated.•The approach is verified with the classical Mie scattering and NASA almond problems and validated against experimental data.•The ability to determine radar cross section profiles directly from CAD data without meshing is demonstrated.
doi_str_mv 10.1016/j.jcp.2018.01.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2069971410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999118300354</els_id><sourcerecordid>2069971410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-918b34dfb5f5901251401a73fba011b0d44f36ab2edbcc2e6bbd332b3a8a0d193</originalsourceid><addsrcrecordid>eNp9kMtuFDEQRa0IJIbAB7CzxLo7Ve7HtMUqRECQImUT1pYf1RO3pu3G9oDI1-PRsGZV0q1763EY-4DQIuB4s7SL3VoBOLWALYjhiu0QJDRij-MrtgMQ2Egp8Q17m_MCANPQTzsWbwP3OR4orlSSt9zEU3A6_eF0pJVC4VV_jo7PMZ0lW1Jc9SFQqd5sdSmUfDjw3748cxvXTRdvjsQ_N3k7-kDc-WxTdb_URgz5HXs962Om9__qNfvx9cvT3X3z8Pjt-93tQ2O7cSqNxMl0vZvNMA8SUAzYA-p9NxsNiAZc38_dqI0gZ6wVNBrjuk6YTk8aHMrumn28zN1S_HmiXNQSTynUlUrAKOUee4TqwovLpphzolltya_1e4WgzlzVoipXdeaqAFXlWjOfLhmq5__ylFS2noIl51PFo1z0_0n_BWzBgyM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069971410</pqid></control><display><type>article</type><title>An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations</title><source>Elsevier ScienceDirect Journals</source><creator>Simpson, R.N. ; Liu, Z. ; Vázquez, R. ; Evans, J.A.</creator><creatorcontrib>Simpson, R.N. ; Liu, Z. ; Vázquez, R. ; Evans, J.A.</creatorcontrib><description>We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B-splines to represent model geometry and compatible B-splines to approximate the surface current, and adopts the isogeometric concept in which the basis for analysis is taken directly from CAD (geometry) data. The approach allows for high-order approximations and crucially provides a direct link with CAD data structures that allows for efficient design workflows. After outlining the construction of div- and curl-conforming B-splines defined over 3D surfaces we describe their use with the electric and magnetic field integral equations using a Galerkin formulation. We use Bézier extraction to accelerate the computation of NURBS and B-spline terms and employ H-matrices to provide accelerated computations and memory reduction for the dense matrices that result from the boundary integral discretization. The method is verified using the well known Mie scattering problem posed over a perfectly electrically conducting sphere and the classic NASA almond problem. Finally, we demonstrate the ability of the approach to handle models with complex geometry directly from CAD without mesh generation. •An isogeometric boundary element method for electromagnetic scattering is proposed.•Compatible B-spline approximations used to discretize the electric and magnetic field integral equations are detailed.•The superior accuracy of high order compatible B-spline approximations over traditional approximations is demonstrated.•The approach is verified with the classical Mie scattering and NASA almond problems and validated against experimental data.•The ability to determine radar cross section profiles directly from CAD data without meshing is demonstrated.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2018.01.025</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Approximation ; Boundary element method ; Compatibility ; Compatible B-splines ; Computational physics ; Computer memory ; Data structures ; Discretization ; Electromagnetic scattering ; Electromagnetics ; Finite element method ; Galerkin method ; Integral equations ; Isogeometric analysis ; Magnetic fields ; Mathematical analysis ; Mesh generation ; Method of moments ; Mie scattering ; Splines</subject><ispartof>Journal of computational physics, 2018-06, Vol.362, p.264-289</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Jun 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-918b34dfb5f5901251401a73fba011b0d44f36ab2edbcc2e6bbd332b3a8a0d193</citedby><cites>FETCH-LOGICAL-c368t-918b34dfb5f5901251401a73fba011b0d44f36ab2edbcc2e6bbd332b3a8a0d193</cites><orcidid>0000-0001-7044-3841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2018.01.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Simpson, R.N.</creatorcontrib><creatorcontrib>Liu, Z.</creatorcontrib><creatorcontrib>Vázquez, R.</creatorcontrib><creatorcontrib>Evans, J.A.</creatorcontrib><title>An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations</title><title>Journal of computational physics</title><description>We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B-splines to represent model geometry and compatible B-splines to approximate the surface current, and adopts the isogeometric concept in which the basis for analysis is taken directly from CAD (geometry) data. The approach allows for high-order approximations and crucially provides a direct link with CAD data structures that allows for efficient design workflows. After outlining the construction of div- and curl-conforming B-splines defined over 3D surfaces we describe their use with the electric and magnetic field integral equations using a Galerkin formulation. We use Bézier extraction to accelerate the computation of NURBS and B-spline terms and employ H-matrices to provide accelerated computations and memory reduction for the dense matrices that result from the boundary integral discretization. The method is verified using the well known Mie scattering problem posed over a perfectly electrically conducting sphere and the classic NASA almond problem. Finally, we demonstrate the ability of the approach to handle models with complex geometry directly from CAD without mesh generation. •An isogeometric boundary element method for electromagnetic scattering is proposed.•Compatible B-spline approximations used to discretize the electric and magnetic field integral equations are detailed.•The superior accuracy of high order compatible B-spline approximations over traditional approximations is demonstrated.•The approach is verified with the classical Mie scattering and NASA almond problems and validated against experimental data.•The ability to determine radar cross section profiles directly from CAD data without meshing is demonstrated.</description><subject>Approximation</subject><subject>Boundary element method</subject><subject>Compatibility</subject><subject>Compatible B-splines</subject><subject>Computational physics</subject><subject>Computer memory</subject><subject>Data structures</subject><subject>Discretization</subject><subject>Electromagnetic scattering</subject><subject>Electromagnetics</subject><subject>Finite element method</subject><subject>Galerkin method</subject><subject>Integral equations</subject><subject>Isogeometric analysis</subject><subject>Magnetic fields</subject><subject>Mathematical analysis</subject><subject>Mesh generation</subject><subject>Method of moments</subject><subject>Mie scattering</subject><subject>Splines</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtuFDEQRa0IJIbAB7CzxLo7Ve7HtMUqRECQImUT1pYf1RO3pu3G9oDI1-PRsGZV0q1763EY-4DQIuB4s7SL3VoBOLWALYjhiu0QJDRij-MrtgMQ2Egp8Q17m_MCANPQTzsWbwP3OR4orlSSt9zEU3A6_eF0pJVC4VV_jo7PMZ0lW1Jc9SFQqd5sdSmUfDjw3748cxvXTRdvjsQ_N3k7-kDc-WxTdb_URgz5HXs962Om9__qNfvx9cvT3X3z8Pjt-93tQ2O7cSqNxMl0vZvNMA8SUAzYA-p9NxsNiAZc38_dqI0gZ6wVNBrjuk6YTk8aHMrumn28zN1S_HmiXNQSTynUlUrAKOUee4TqwovLpphzolltya_1e4WgzlzVoipXdeaqAFXlWjOfLhmq5__ylFS2noIl51PFo1z0_0n_BWzBgyM</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Simpson, R.N.</creator><creator>Liu, Z.</creator><creator>Vázquez, R.</creator><creator>Evans, J.A.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7044-3841</orcidid></search><sort><creationdate>20180601</creationdate><title>An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations</title><author>Simpson, R.N. ; Liu, Z. ; Vázquez, R. ; Evans, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-918b34dfb5f5901251401a73fba011b0d44f36ab2edbcc2e6bbd332b3a8a0d193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Boundary element method</topic><topic>Compatibility</topic><topic>Compatible B-splines</topic><topic>Computational physics</topic><topic>Computer memory</topic><topic>Data structures</topic><topic>Discretization</topic><topic>Electromagnetic scattering</topic><topic>Electromagnetics</topic><topic>Finite element method</topic><topic>Galerkin method</topic><topic>Integral equations</topic><topic>Isogeometric analysis</topic><topic>Magnetic fields</topic><topic>Mathematical analysis</topic><topic>Mesh generation</topic><topic>Method of moments</topic><topic>Mie scattering</topic><topic>Splines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simpson, R.N.</creatorcontrib><creatorcontrib>Liu, Z.</creatorcontrib><creatorcontrib>Vázquez, R.</creatorcontrib><creatorcontrib>Evans, J.A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simpson, R.N.</au><au>Liu, Z.</au><au>Vázquez, R.</au><au>Evans, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations</atitle><jtitle>Journal of computational physics</jtitle><date>2018-06-01</date><risdate>2018</risdate><volume>362</volume><spage>264</spage><epage>289</epage><pages>264-289</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B-splines to represent model geometry and compatible B-splines to approximate the surface current, and adopts the isogeometric concept in which the basis for analysis is taken directly from CAD (geometry) data. The approach allows for high-order approximations and crucially provides a direct link with CAD data structures that allows for efficient design workflows. After outlining the construction of div- and curl-conforming B-splines defined over 3D surfaces we describe their use with the electric and magnetic field integral equations using a Galerkin formulation. We use Bézier extraction to accelerate the computation of NURBS and B-spline terms and employ H-matrices to provide accelerated computations and memory reduction for the dense matrices that result from the boundary integral discretization. The method is verified using the well known Mie scattering problem posed over a perfectly electrically conducting sphere and the classic NASA almond problem. Finally, we demonstrate the ability of the approach to handle models with complex geometry directly from CAD without mesh generation. •An isogeometric boundary element method for electromagnetic scattering is proposed.•Compatible B-spline approximations used to discretize the electric and magnetic field integral equations are detailed.•The superior accuracy of high order compatible B-spline approximations over traditional approximations is demonstrated.•The approach is verified with the classical Mie scattering and NASA almond problems and validated against experimental data.•The ability to determine radar cross section profiles directly from CAD data without meshing is demonstrated.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2018.01.025</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-7044-3841</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2018-06, Vol.362, p.264-289
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2069971410
source Elsevier ScienceDirect Journals
subjects Approximation
Boundary element method
Compatibility
Compatible B-splines
Computational physics
Computer memory
Data structures
Discretization
Electromagnetic scattering
Electromagnetics
Finite element method
Galerkin method
Integral equations
Isogeometric analysis
Magnetic fields
Mathematical analysis
Mesh generation
Method of moments
Mie scattering
Splines
title An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A06%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20isogeometric%20boundary%20element%20method%20for%20electromagnetic%20scattering%20with%20compatible%20B-spline%20discretizations&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Simpson,%20R.N.&rft.date=2018-06-01&rft.volume=362&rft.spage=264&rft.epage=289&rft.pages=264-289&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2018.01.025&rft_dat=%3Cproquest_cross%3E2069971410%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069971410&rft_id=info:pmid/&rft_els_id=S0021999118300354&rfr_iscdi=true