A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem
In this paper, we develop a novel finite difference method to discretize the fractional Laplacian (−Δ)α/2 in hypersingular integral form. By introducing a splitting parameter, we formulate the fractional Laplacian as the weighted integral of a weak singular function, which is then approximated by th...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2018-02, Vol.355, p.233-252 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 252 |
---|---|
container_issue | |
container_start_page | 233 |
container_title | Journal of computational physics |
container_volume | 355 |
creator | Duo, Siwei van Wyk, Hans Werner Zhang, Yanzhi |
description | In this paper, we develop a novel finite difference method to discretize the fractional Laplacian (−Δ)α/2 in hypersingular integral form. By introducing a splitting parameter, we formulate the fractional Laplacian as the weighted integral of a weak singular function, which is then approximated by the weighted trapezoidal rule. Compared to other existing methods, our method is more accurate and simpler to implement, and moreover it closely resembles the central difference scheme for the classical Laplace operator. We prove that for u∈C3,α/2(R), our method has an accuracy of O(h2)uniformly for anyα∈(0,2), while for u∈C1,α/2(R), the accuracy is O(h1−α/2). The convergence behavior of our method is consistent with that of the central difference approximation of the classical Laplace operator. Additionally, we apply our method to solve the fractional Poisson equation and study the convergence of its numerical solutions. The extensive numerical examples that accompany our analysis verify our results, as well as give additional insights into the convergence behavior of our method.
•A novel finite difference method is proposed to discretize the fractional Laplacian and the fractional Poisson equation.•Rigorous numerical analysis are carried out under different conditions.•Our method has the accuracy O(h2) for u∈C3,α/2(R), the highest to date.•Our method reduces to the central difference scheme for the classical Laplacian as α→2−. |
doi_str_mv | 10.1016/j.jcp.2017.11.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2069507984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999117308495</els_id><sourcerecordid>2069507984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-b6188d3eac0401a648a2a961b17d83c459de6474255c096be6d34c4147141d5c3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEuXxA7hZ4pywmzhOLE5VxUuqBAc4W47tqI7SONhpJf49LuXEgdMcdmZ29BFyg5AjIL_r815PeQFY54g5IJ6QBYKArKiRn5IFQIGZEALPyUWMPQA0FWsWZLuko9_bgarRUKX1LqjZ0s6NLolxXWeDHbWlWztvvKGdD3TeJENQenZ-VANdq2lQ2qnxp-LP8c27GP1Ip-DbwW6vyFmnhmivf_WSfDw-vK-es_Xr08tquc40K9mctRybxpRWaWCAirNGFUpwbLE2TalZJYzlrGZFVWkQvLXclEwzZDUyNJUuL8ntsTf9_dzZOMve70IaFGUBXFRQi4YlFx5dOvgYg-3kFNxWhS-JIA9UZS8TVXmgKhFlopoy98eMTfP3zgYZtTsQMi5YPUvj3T_pb3F_f5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069507984</pqid></control><display><type>article</type><title>A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem</title><source>Elsevier ScienceDirect Journals</source><creator>Duo, Siwei ; van Wyk, Hans Werner ; Zhang, Yanzhi</creator><creatorcontrib>Duo, Siwei ; van Wyk, Hans Werner ; Zhang, Yanzhi</creatorcontrib><description>In this paper, we develop a novel finite difference method to discretize the fractional Laplacian (−Δ)α/2 in hypersingular integral form. By introducing a splitting parameter, we formulate the fractional Laplacian as the weighted integral of a weak singular function, which is then approximated by the weighted trapezoidal rule. Compared to other existing methods, our method is more accurate and simpler to implement, and moreover it closely resembles the central difference scheme for the classical Laplace operator. We prove that for u∈C3,α/2(R), our method has an accuracy of O(h2)uniformly for anyα∈(0,2), while for u∈C1,α/2(R), the accuracy is O(h1−α/2). The convergence behavior of our method is consistent with that of the central difference approximation of the classical Laplace operator. Additionally, we apply our method to solve the fractional Poisson equation and study the convergence of its numerical solutions. The extensive numerical examples that accompany our analysis verify our results, as well as give additional insights into the convergence behavior of our method.
•A novel finite difference method is proposed to discretize the fractional Laplacian and the fractional Poisson equation.•Rigorous numerical analysis are carried out under different conditions.•Our method has the accuracy O(h2) for u∈C3,α/2(R), the highest to date.•Our method reduces to the central difference scheme for the classical Laplacian as α→2−.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2017.11.011</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Approximation ; Computational physics ; Convergence ; Error estimates ; Finite difference method ; Fractional Laplacian ; Fractional Poisson equation ; Integrals ; Laplace transforms ; Numerical analysis ; Operators (mathematics) ; Poisson distribution ; Poisson equation ; Studies ; Weighted Montgomery identity ; Weighted trapezoidal rule</subject><ispartof>Journal of computational physics, 2018-02, Vol.355, p.233-252</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Feb 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-b6188d3eac0401a648a2a961b17d83c459de6474255c096be6d34c4147141d5c3</citedby><cites>FETCH-LOGICAL-c434t-b6188d3eac0401a648a2a961b17d83c459de6474255c096be6d34c4147141d5c3</cites><orcidid>0000-0002-8061-6520 ; 0000-0001-9994-1270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999117308495$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Duo, Siwei</creatorcontrib><creatorcontrib>van Wyk, Hans Werner</creatorcontrib><creatorcontrib>Zhang, Yanzhi</creatorcontrib><title>A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem</title><title>Journal of computational physics</title><description>In this paper, we develop a novel finite difference method to discretize the fractional Laplacian (−Δ)α/2 in hypersingular integral form. By introducing a splitting parameter, we formulate the fractional Laplacian as the weighted integral of a weak singular function, which is then approximated by the weighted trapezoidal rule. Compared to other existing methods, our method is more accurate and simpler to implement, and moreover it closely resembles the central difference scheme for the classical Laplace operator. We prove that for u∈C3,α/2(R), our method has an accuracy of O(h2)uniformly for anyα∈(0,2), while for u∈C1,α/2(R), the accuracy is O(h1−α/2). The convergence behavior of our method is consistent with that of the central difference approximation of the classical Laplace operator. Additionally, we apply our method to solve the fractional Poisson equation and study the convergence of its numerical solutions. The extensive numerical examples that accompany our analysis verify our results, as well as give additional insights into the convergence behavior of our method.
•A novel finite difference method is proposed to discretize the fractional Laplacian and the fractional Poisson equation.•Rigorous numerical analysis are carried out under different conditions.•Our method has the accuracy O(h2) for u∈C3,α/2(R), the highest to date.•Our method reduces to the central difference scheme for the classical Laplacian as α→2−.</description><subject>Approximation</subject><subject>Computational physics</subject><subject>Convergence</subject><subject>Error estimates</subject><subject>Finite difference method</subject><subject>Fractional Laplacian</subject><subject>Fractional Poisson equation</subject><subject>Integrals</subject><subject>Laplace transforms</subject><subject>Numerical analysis</subject><subject>Operators (mathematics)</subject><subject>Poisson distribution</subject><subject>Poisson equation</subject><subject>Studies</subject><subject>Weighted Montgomery identity</subject><subject>Weighted trapezoidal rule</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEuXxA7hZ4pywmzhOLE5VxUuqBAc4W47tqI7SONhpJf49LuXEgdMcdmZ29BFyg5AjIL_r815PeQFY54g5IJ6QBYKArKiRn5IFQIGZEALPyUWMPQA0FWsWZLuko9_bgarRUKX1LqjZ0s6NLolxXWeDHbWlWztvvKGdD3TeJENQenZ-VANdq2lQ2qnxp-LP8c27GP1Ip-DbwW6vyFmnhmivf_WSfDw-vK-es_Xr08tquc40K9mctRybxpRWaWCAirNGFUpwbLE2TalZJYzlrGZFVWkQvLXclEwzZDUyNJUuL8ntsTf9_dzZOMve70IaFGUBXFRQi4YlFx5dOvgYg-3kFNxWhS-JIA9UZS8TVXmgKhFlopoy98eMTfP3zgYZtTsQMi5YPUvj3T_pb3F_f5I</recordid><startdate>20180215</startdate><enddate>20180215</enddate><creator>Duo, Siwei</creator><creator>van Wyk, Hans Werner</creator><creator>Zhang, Yanzhi</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8061-6520</orcidid><orcidid>https://orcid.org/0000-0001-9994-1270</orcidid></search><sort><creationdate>20180215</creationdate><title>A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem</title><author>Duo, Siwei ; van Wyk, Hans Werner ; Zhang, Yanzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-b6188d3eac0401a648a2a961b17d83c459de6474255c096be6d34c4147141d5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Computational physics</topic><topic>Convergence</topic><topic>Error estimates</topic><topic>Finite difference method</topic><topic>Fractional Laplacian</topic><topic>Fractional Poisson equation</topic><topic>Integrals</topic><topic>Laplace transforms</topic><topic>Numerical analysis</topic><topic>Operators (mathematics)</topic><topic>Poisson distribution</topic><topic>Poisson equation</topic><topic>Studies</topic><topic>Weighted Montgomery identity</topic><topic>Weighted trapezoidal rule</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duo, Siwei</creatorcontrib><creatorcontrib>van Wyk, Hans Werner</creatorcontrib><creatorcontrib>Zhang, Yanzhi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duo, Siwei</au><au>van Wyk, Hans Werner</au><au>Zhang, Yanzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem</atitle><jtitle>Journal of computational physics</jtitle><date>2018-02-15</date><risdate>2018</risdate><volume>355</volume><spage>233</spage><epage>252</epage><pages>233-252</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In this paper, we develop a novel finite difference method to discretize the fractional Laplacian (−Δ)α/2 in hypersingular integral form. By introducing a splitting parameter, we formulate the fractional Laplacian as the weighted integral of a weak singular function, which is then approximated by the weighted trapezoidal rule. Compared to other existing methods, our method is more accurate and simpler to implement, and moreover it closely resembles the central difference scheme for the classical Laplace operator. We prove that for u∈C3,α/2(R), our method has an accuracy of O(h2)uniformly for anyα∈(0,2), while for u∈C1,α/2(R), the accuracy is O(h1−α/2). The convergence behavior of our method is consistent with that of the central difference approximation of the classical Laplace operator. Additionally, we apply our method to solve the fractional Poisson equation and study the convergence of its numerical solutions. The extensive numerical examples that accompany our analysis verify our results, as well as give additional insights into the convergence behavior of our method.
•A novel finite difference method is proposed to discretize the fractional Laplacian and the fractional Poisson equation.•Rigorous numerical analysis are carried out under different conditions.•Our method has the accuracy O(h2) for u∈C3,α/2(R), the highest to date.•Our method reduces to the central difference scheme for the classical Laplacian as α→2−.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2017.11.011</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8061-6520</orcidid><orcidid>https://orcid.org/0000-0001-9994-1270</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2018-02, Vol.355, p.233-252 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2069507984 |
source | Elsevier ScienceDirect Journals |
subjects | Approximation Computational physics Convergence Error estimates Finite difference method Fractional Laplacian Fractional Poisson equation Integrals Laplace transforms Numerical analysis Operators (mathematics) Poisson distribution Poisson equation Studies Weighted Montgomery identity Weighted trapezoidal rule |
title | A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20and%20accurate%20finite%20difference%20method%20for%20the%20fractional%20Laplacian%20and%20the%20fractional%20Poisson%20problem&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Duo,%20Siwei&rft.date=2018-02-15&rft.volume=355&rft.spage=233&rft.epage=252&rft.pages=233-252&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2017.11.011&rft_dat=%3Cproquest_cross%3E2069507984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069507984&rft_id=info:pmid/&rft_els_id=S0021999117308495&rfr_iscdi=true |