A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem

In this paper, we develop a novel finite difference method to discretize the fractional Laplacian (−Δ)α/2 in hypersingular integral form. By introducing a splitting parameter, we formulate the fractional Laplacian as the weighted integral of a weak singular function, which is then approximated by th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2018-02, Vol.355, p.233-252
Hauptverfasser: Duo, Siwei, van Wyk, Hans Werner, Zhang, Yanzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue
container_start_page 233
container_title Journal of computational physics
container_volume 355
creator Duo, Siwei
van Wyk, Hans Werner
Zhang, Yanzhi
description In this paper, we develop a novel finite difference method to discretize the fractional Laplacian (−Δ)α/2 in hypersingular integral form. By introducing a splitting parameter, we formulate the fractional Laplacian as the weighted integral of a weak singular function, which is then approximated by the weighted trapezoidal rule. Compared to other existing methods, our method is more accurate and simpler to implement, and moreover it closely resembles the central difference scheme for the classical Laplace operator. We prove that for u∈C3,α/2(R), our method has an accuracy of O(h2)uniformly for anyα∈(0,2), while for u∈C1,α/2(R), the accuracy is O(h1−α/2). The convergence behavior of our method is consistent with that of the central difference approximation of the classical Laplace operator. Additionally, we apply our method to solve the fractional Poisson equation and study the convergence of its numerical solutions. The extensive numerical examples that accompany our analysis verify our results, as well as give additional insights into the convergence behavior of our method. •A novel finite difference method is proposed to discretize the fractional Laplacian and the fractional Poisson equation.•Rigorous numerical analysis are carried out under different conditions.•Our method has the accuracy O(h2) for u∈C3,α/2(R), the highest to date.•Our method reduces to the central difference scheme for the classical Laplacian as α→2−.
doi_str_mv 10.1016/j.jcp.2017.11.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2069507984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999117308495</els_id><sourcerecordid>2069507984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-b6188d3eac0401a648a2a961b17d83c459de6474255c096be6d34c4147141d5c3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEuXxA7hZ4pywmzhOLE5VxUuqBAc4W47tqI7SONhpJf49LuXEgdMcdmZ29BFyg5AjIL_r815PeQFY54g5IJ6QBYKArKiRn5IFQIGZEALPyUWMPQA0FWsWZLuko9_bgarRUKX1LqjZ0s6NLolxXWeDHbWlWztvvKGdD3TeJENQenZ-VANdq2lQ2qnxp-LP8c27GP1Ip-DbwW6vyFmnhmivf_WSfDw-vK-es_Xr08tquc40K9mctRybxpRWaWCAirNGFUpwbLE2TalZJYzlrGZFVWkQvLXclEwzZDUyNJUuL8ntsTf9_dzZOMve70IaFGUBXFRQi4YlFx5dOvgYg-3kFNxWhS-JIA9UZS8TVXmgKhFlopoy98eMTfP3zgYZtTsQMi5YPUvj3T_pb3F_f5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069507984</pqid></control><display><type>article</type><title>A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem</title><source>Elsevier ScienceDirect Journals</source><creator>Duo, Siwei ; van Wyk, Hans Werner ; Zhang, Yanzhi</creator><creatorcontrib>Duo, Siwei ; van Wyk, Hans Werner ; Zhang, Yanzhi</creatorcontrib><description>In this paper, we develop a novel finite difference method to discretize the fractional Laplacian (−Δ)α/2 in hypersingular integral form. By introducing a splitting parameter, we formulate the fractional Laplacian as the weighted integral of a weak singular function, which is then approximated by the weighted trapezoidal rule. Compared to other existing methods, our method is more accurate and simpler to implement, and moreover it closely resembles the central difference scheme for the classical Laplace operator. We prove that for u∈C3,α/2(R), our method has an accuracy of O(h2)uniformly for anyα∈(0,2), while for u∈C1,α/2(R), the accuracy is O(h1−α/2). The convergence behavior of our method is consistent with that of the central difference approximation of the classical Laplace operator. Additionally, we apply our method to solve the fractional Poisson equation and study the convergence of its numerical solutions. The extensive numerical examples that accompany our analysis verify our results, as well as give additional insights into the convergence behavior of our method. •A novel finite difference method is proposed to discretize the fractional Laplacian and the fractional Poisson equation.•Rigorous numerical analysis are carried out under different conditions.•Our method has the accuracy O(h2) for u∈C3,α/2(R), the highest to date.•Our method reduces to the central difference scheme for the classical Laplacian as α→2−.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2017.11.011</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Approximation ; Computational physics ; Convergence ; Error estimates ; Finite difference method ; Fractional Laplacian ; Fractional Poisson equation ; Integrals ; Laplace transforms ; Numerical analysis ; Operators (mathematics) ; Poisson distribution ; Poisson equation ; Studies ; Weighted Montgomery identity ; Weighted trapezoidal rule</subject><ispartof>Journal of computational physics, 2018-02, Vol.355, p.233-252</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Feb 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-b6188d3eac0401a648a2a961b17d83c459de6474255c096be6d34c4147141d5c3</citedby><cites>FETCH-LOGICAL-c434t-b6188d3eac0401a648a2a961b17d83c459de6474255c096be6d34c4147141d5c3</cites><orcidid>0000-0002-8061-6520 ; 0000-0001-9994-1270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999117308495$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Duo, Siwei</creatorcontrib><creatorcontrib>van Wyk, Hans Werner</creatorcontrib><creatorcontrib>Zhang, Yanzhi</creatorcontrib><title>A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem</title><title>Journal of computational physics</title><description>In this paper, we develop a novel finite difference method to discretize the fractional Laplacian (−Δ)α/2 in hypersingular integral form. By introducing a splitting parameter, we formulate the fractional Laplacian as the weighted integral of a weak singular function, which is then approximated by the weighted trapezoidal rule. Compared to other existing methods, our method is more accurate and simpler to implement, and moreover it closely resembles the central difference scheme for the classical Laplace operator. We prove that for u∈C3,α/2(R), our method has an accuracy of O(h2)uniformly for anyα∈(0,2), while for u∈C1,α/2(R), the accuracy is O(h1−α/2). The convergence behavior of our method is consistent with that of the central difference approximation of the classical Laplace operator. Additionally, we apply our method to solve the fractional Poisson equation and study the convergence of its numerical solutions. The extensive numerical examples that accompany our analysis verify our results, as well as give additional insights into the convergence behavior of our method. •A novel finite difference method is proposed to discretize the fractional Laplacian and the fractional Poisson equation.•Rigorous numerical analysis are carried out under different conditions.•Our method has the accuracy O(h2) for u∈C3,α/2(R), the highest to date.•Our method reduces to the central difference scheme for the classical Laplacian as α→2−.</description><subject>Approximation</subject><subject>Computational physics</subject><subject>Convergence</subject><subject>Error estimates</subject><subject>Finite difference method</subject><subject>Fractional Laplacian</subject><subject>Fractional Poisson equation</subject><subject>Integrals</subject><subject>Laplace transforms</subject><subject>Numerical analysis</subject><subject>Operators (mathematics)</subject><subject>Poisson distribution</subject><subject>Poisson equation</subject><subject>Studies</subject><subject>Weighted Montgomery identity</subject><subject>Weighted trapezoidal rule</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEuXxA7hZ4pywmzhOLE5VxUuqBAc4W47tqI7SONhpJf49LuXEgdMcdmZ29BFyg5AjIL_r815PeQFY54g5IJ6QBYKArKiRn5IFQIGZEALPyUWMPQA0FWsWZLuko9_bgarRUKX1LqjZ0s6NLolxXWeDHbWlWztvvKGdD3TeJENQenZ-VANdq2lQ2qnxp-LP8c27GP1Ip-DbwW6vyFmnhmivf_WSfDw-vK-es_Xr08tquc40K9mctRybxpRWaWCAirNGFUpwbLE2TalZJYzlrGZFVWkQvLXclEwzZDUyNJUuL8ntsTf9_dzZOMve70IaFGUBXFRQi4YlFx5dOvgYg-3kFNxWhS-JIA9UZS8TVXmgKhFlopoy98eMTfP3zgYZtTsQMi5YPUvj3T_pb3F_f5I</recordid><startdate>20180215</startdate><enddate>20180215</enddate><creator>Duo, Siwei</creator><creator>van Wyk, Hans Werner</creator><creator>Zhang, Yanzhi</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8061-6520</orcidid><orcidid>https://orcid.org/0000-0001-9994-1270</orcidid></search><sort><creationdate>20180215</creationdate><title>A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem</title><author>Duo, Siwei ; van Wyk, Hans Werner ; Zhang, Yanzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-b6188d3eac0401a648a2a961b17d83c459de6474255c096be6d34c4147141d5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Computational physics</topic><topic>Convergence</topic><topic>Error estimates</topic><topic>Finite difference method</topic><topic>Fractional Laplacian</topic><topic>Fractional Poisson equation</topic><topic>Integrals</topic><topic>Laplace transforms</topic><topic>Numerical analysis</topic><topic>Operators (mathematics)</topic><topic>Poisson distribution</topic><topic>Poisson equation</topic><topic>Studies</topic><topic>Weighted Montgomery identity</topic><topic>Weighted trapezoidal rule</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duo, Siwei</creatorcontrib><creatorcontrib>van Wyk, Hans Werner</creatorcontrib><creatorcontrib>Zhang, Yanzhi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duo, Siwei</au><au>van Wyk, Hans Werner</au><au>Zhang, Yanzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem</atitle><jtitle>Journal of computational physics</jtitle><date>2018-02-15</date><risdate>2018</risdate><volume>355</volume><spage>233</spage><epage>252</epage><pages>233-252</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In this paper, we develop a novel finite difference method to discretize the fractional Laplacian (−Δ)α/2 in hypersingular integral form. By introducing a splitting parameter, we formulate the fractional Laplacian as the weighted integral of a weak singular function, which is then approximated by the weighted trapezoidal rule. Compared to other existing methods, our method is more accurate and simpler to implement, and moreover it closely resembles the central difference scheme for the classical Laplace operator. We prove that for u∈C3,α/2(R), our method has an accuracy of O(h2)uniformly for anyα∈(0,2), while for u∈C1,α/2(R), the accuracy is O(h1−α/2). The convergence behavior of our method is consistent with that of the central difference approximation of the classical Laplace operator. Additionally, we apply our method to solve the fractional Poisson equation and study the convergence of its numerical solutions. The extensive numerical examples that accompany our analysis verify our results, as well as give additional insights into the convergence behavior of our method. •A novel finite difference method is proposed to discretize the fractional Laplacian and the fractional Poisson equation.•Rigorous numerical analysis are carried out under different conditions.•Our method has the accuracy O(h2) for u∈C3,α/2(R), the highest to date.•Our method reduces to the central difference scheme for the classical Laplacian as α→2−.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2017.11.011</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-8061-6520</orcidid><orcidid>https://orcid.org/0000-0001-9994-1270</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2018-02, Vol.355, p.233-252
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2069507984
source Elsevier ScienceDirect Journals
subjects Approximation
Computational physics
Convergence
Error estimates
Finite difference method
Fractional Laplacian
Fractional Poisson equation
Integrals
Laplace transforms
Numerical analysis
Operators (mathematics)
Poisson distribution
Poisson equation
Studies
Weighted Montgomery identity
Weighted trapezoidal rule
title A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A10%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20and%20accurate%20finite%20difference%20method%20for%20the%20fractional%20Laplacian%20and%20the%20fractional%20Poisson%20problem&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Duo,%20Siwei&rft.date=2018-02-15&rft.volume=355&rft.spage=233&rft.epage=252&rft.pages=233-252&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2017.11.011&rft_dat=%3Cproquest_cross%3E2069507984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069507984&rft_id=info:pmid/&rft_els_id=S0021999117308495&rfr_iscdi=true