Stream network conflation with topographic DEMs

This paper presents DEM-Stream-Conflation (DSC) algorithm – a scale-independent robust technique of aligning vector streams with flowpaths dictated by raster DEMs. Designed as an alternative to both stream-burning and threshold-dependent stream segmentation techniques, DSC utilizes the existing vect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental modelling & software : with environment data news 2018-04, Vol.102, p.241-249
Hauptverfasser: Yadav, Bidhyananda, Hatfield, Kirk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 249
container_issue
container_start_page 241
container_title Environmental modelling & software : with environment data news
container_volume 102
creator Yadav, Bidhyananda
Hatfield, Kirk
description This paper presents DEM-Stream-Conflation (DSC) algorithm – a scale-independent robust technique of aligning vector streams with flowpaths dictated by raster DEMs. Designed as an alternative to both stream-burning and threshold-dependent stream segmentation techniques, DSC utilizes the existing vector flowlines to identify the channel heads and a sink filled hydrologically conditioned DEM to resolve the flowpaths. The algorithm conceptually initiates the movement of water on a DEM at the starting node of channel heads, from which it traces the path of water to its ultimate watershed outlet. Each trace represents a stream, which is in perfect alignment with the direction dictated by the raster DEM. The algorithm is tested with different DEMs, and its efficacy is demonstrated through the replication of the original vector drainage pattern, derivation of geomorphic attributes that are independent of tested DEM scale, and the visualization of monotonically decreasing longitudinal stream profiles. •An algorithm for aligning vector stream network with topographic DEM is presented.•Avoids ambiguity of channel initiation threshold, and the pitfalls of stream-burning.•Does not require any user-defined parameters for stream segmentation.•Developed in Python using ArcPy and Numpy libraries.•Fits seamlessly into existing catchment modeling framework.
doi_str_mv 10.1016/j.envsoft.2018.01.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2069505888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815216311124</els_id><sourcerecordid>2069505888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-e45d6d21960f0257bb251cb9139d3c6bac4b3fb054b8f9732f750857306c5e893</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqXwCEiRmJMe27FjTwiVq1TEAMxW4tjUoY2D7bbi7UnV7kznH_6LzofQNYYCA-azrjD9NnqbCgJYFIALAHmCJlhUNOcV4aejprzMBWbkHF3E2AHAqMsJmr2nYOp11pu08-E70763qzo532c7l5ZZ8oP_CvWwdDq7f3iNl-jM1qtoro53ij4fHz7mz_ni7ellfrfINaVVyk3JWt4SLDlYIKxqGsKwbiSmsqWaN7UuG2obYGUjrKwosRUDwSoKXDMjJJ2im0PvEPzPxsSkOr8J_TipCHDJgAkhRhc7uHTwMQZj1RDcug6_CoPas1GdOrJRezYKsBrZjLnbQ86ML2ydCSpqZ3ptWheMTqr17p-GPx_Xbok</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069505888</pqid></control><display><type>article</type><title>Stream network conflation with topographic DEMs</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yadav, Bidhyananda ; Hatfield, Kirk</creator><creatorcontrib>Yadav, Bidhyananda ; Hatfield, Kirk</creatorcontrib><description>This paper presents DEM-Stream-Conflation (DSC) algorithm – a scale-independent robust technique of aligning vector streams with flowpaths dictated by raster DEMs. Designed as an alternative to both stream-burning and threshold-dependent stream segmentation techniques, DSC utilizes the existing vector flowlines to identify the channel heads and a sink filled hydrologically conditioned DEM to resolve the flowpaths. The algorithm conceptually initiates the movement of water on a DEM at the starting node of channel heads, from which it traces the path of water to its ultimate watershed outlet. Each trace represents a stream, which is in perfect alignment with the direction dictated by the raster DEM. The algorithm is tested with different DEMs, and its efficacy is demonstrated through the replication of the original vector drainage pattern, derivation of geomorphic attributes that are independent of tested DEM scale, and the visualization of monotonically decreasing longitudinal stream profiles. •An algorithm for aligning vector stream network with topographic DEM is presented.•Avoids ambiguity of channel initiation threshold, and the pitfalls of stream-burning.•Does not require any user-defined parameters for stream segmentation.•Developed in Python using ArcPy and Numpy libraries.•Fits seamlessly into existing catchment modeling framework.</description><identifier>ISSN: 1364-8152</identifier><identifier>EISSN: 1873-6726</identifier><identifier>DOI: 10.1016/j.envsoft.2018.01.009</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Burning ; Conditioning ; Creeks &amp; streams ; Geomorphology ; Hydrology ; Raster ; Segmentation ; Stream profiles ; Streams ; Watersheds</subject><ispartof>Environmental modelling &amp; software : with environment data news, 2018-04, Vol.102, p.241-249</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-e45d6d21960f0257bb251cb9139d3c6bac4b3fb054b8f9732f750857306c5e893</citedby><cites>FETCH-LOGICAL-c337t-e45d6d21960f0257bb251cb9139d3c6bac4b3fb054b8f9732f750857306c5e893</cites><orcidid>0000-0002-9481-4894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.envsoft.2018.01.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yadav, Bidhyananda</creatorcontrib><creatorcontrib>Hatfield, Kirk</creatorcontrib><title>Stream network conflation with topographic DEMs</title><title>Environmental modelling &amp; software : with environment data news</title><description>This paper presents DEM-Stream-Conflation (DSC) algorithm – a scale-independent robust technique of aligning vector streams with flowpaths dictated by raster DEMs. Designed as an alternative to both stream-burning and threshold-dependent stream segmentation techniques, DSC utilizes the existing vector flowlines to identify the channel heads and a sink filled hydrologically conditioned DEM to resolve the flowpaths. The algorithm conceptually initiates the movement of water on a DEM at the starting node of channel heads, from which it traces the path of water to its ultimate watershed outlet. Each trace represents a stream, which is in perfect alignment with the direction dictated by the raster DEM. The algorithm is tested with different DEMs, and its efficacy is demonstrated through the replication of the original vector drainage pattern, derivation of geomorphic attributes that are independent of tested DEM scale, and the visualization of monotonically decreasing longitudinal stream profiles. •An algorithm for aligning vector stream network with topographic DEM is presented.•Avoids ambiguity of channel initiation threshold, and the pitfalls of stream-burning.•Does not require any user-defined parameters for stream segmentation.•Developed in Python using ArcPy and Numpy libraries.•Fits seamlessly into existing catchment modeling framework.</description><subject>Algorithms</subject><subject>Burning</subject><subject>Conditioning</subject><subject>Creeks &amp; streams</subject><subject>Geomorphology</subject><subject>Hydrology</subject><subject>Raster</subject><subject>Segmentation</subject><subject>Stream profiles</subject><subject>Streams</subject><subject>Watersheds</subject><issn>1364-8152</issn><issn>1873-6726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EEqXwCEiRmJMe27FjTwiVq1TEAMxW4tjUoY2D7bbi7UnV7kznH_6LzofQNYYCA-azrjD9NnqbCgJYFIALAHmCJlhUNOcV4aejprzMBWbkHF3E2AHAqMsJmr2nYOp11pu08-E70763qzo532c7l5ZZ8oP_CvWwdDq7f3iNl-jM1qtoro53ij4fHz7mz_ni7ellfrfINaVVyk3JWt4SLDlYIKxqGsKwbiSmsqWaN7UuG2obYGUjrKwosRUDwSoKXDMjJJ2im0PvEPzPxsSkOr8J_TipCHDJgAkhRhc7uHTwMQZj1RDcug6_CoPas1GdOrJRezYKsBrZjLnbQ86ML2ydCSpqZ3ptWheMTqr17p-GPx_Xbok</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Yadav, Bidhyananda</creator><creator>Hatfield, Kirk</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7SC</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9481-4894</orcidid></search><sort><creationdate>201804</creationdate><title>Stream network conflation with topographic DEMs</title><author>Yadav, Bidhyananda ; Hatfield, Kirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-e45d6d21960f0257bb251cb9139d3c6bac4b3fb054b8f9732f750857306c5e893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Burning</topic><topic>Conditioning</topic><topic>Creeks &amp; streams</topic><topic>Geomorphology</topic><topic>Hydrology</topic><topic>Raster</topic><topic>Segmentation</topic><topic>Stream profiles</topic><topic>Streams</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yadav, Bidhyananda</creatorcontrib><creatorcontrib>Hatfield, Kirk</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Computer and Information Systems Abstracts</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental modelling &amp; software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yadav, Bidhyananda</au><au>Hatfield, Kirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stream network conflation with topographic DEMs</atitle><jtitle>Environmental modelling &amp; software : with environment data news</jtitle><date>2018-04</date><risdate>2018</risdate><volume>102</volume><spage>241</spage><epage>249</epage><pages>241-249</pages><issn>1364-8152</issn><eissn>1873-6726</eissn><abstract>This paper presents DEM-Stream-Conflation (DSC) algorithm – a scale-independent robust technique of aligning vector streams with flowpaths dictated by raster DEMs. Designed as an alternative to both stream-burning and threshold-dependent stream segmentation techniques, DSC utilizes the existing vector flowlines to identify the channel heads and a sink filled hydrologically conditioned DEM to resolve the flowpaths. The algorithm conceptually initiates the movement of water on a DEM at the starting node of channel heads, from which it traces the path of water to its ultimate watershed outlet. Each trace represents a stream, which is in perfect alignment with the direction dictated by the raster DEM. The algorithm is tested with different DEMs, and its efficacy is demonstrated through the replication of the original vector drainage pattern, derivation of geomorphic attributes that are independent of tested DEM scale, and the visualization of monotonically decreasing longitudinal stream profiles. •An algorithm for aligning vector stream network with topographic DEM is presented.•Avoids ambiguity of channel initiation threshold, and the pitfalls of stream-burning.•Does not require any user-defined parameters for stream segmentation.•Developed in Python using ArcPy and Numpy libraries.•Fits seamlessly into existing catchment modeling framework.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2018.01.009</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9481-4894</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1364-8152
ispartof Environmental modelling & software : with environment data news, 2018-04, Vol.102, p.241-249
issn 1364-8152
1873-6726
language eng
recordid cdi_proquest_journals_2069505888
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Burning
Conditioning
Creeks & streams
Geomorphology
Hydrology
Raster
Segmentation
Stream profiles
Streams
Watersheds
title Stream network conflation with topographic DEMs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stream%20network%20conflation%20with%20topographic%20DEMs&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Yadav,%20Bidhyananda&rft.date=2018-04&rft.volume=102&rft.spage=241&rft.epage=249&rft.pages=241-249&rft.issn=1364-8152&rft.eissn=1873-6726&rft_id=info:doi/10.1016/j.envsoft.2018.01.009&rft_dat=%3Cproquest_cross%3E2069505888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069505888&rft_id=info:pmid/&rft_els_id=S1364815216311124&rfr_iscdi=true