Kinetic simulation technique for plasma flow in strong external magnetic field

A technique for the kinetic simulation of plasma flow in strong external magnetic fields was developed which captures the compression and expansion of plasma bound to a magnetic flux tube as well as forces on magnetized particles within the flux tube. This quasi-one-dimensional (Q1D) method resolves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2017-12, Vol.351, p.358-375
Hauptverfasser: Ebersohn, Frans H., Sheehan, J.P., Gallimore, Alec D., Shebalin, John V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 375
container_issue
container_start_page 358
container_title Journal of computational physics
container_volume 351
creator Ebersohn, Frans H.
Sheehan, J.P.
Gallimore, Alec D.
Shebalin, John V.
description A technique for the kinetic simulation of plasma flow in strong external magnetic fields was developed which captures the compression and expansion of plasma bound to a magnetic flux tube as well as forces on magnetized particles within the flux tube. This quasi-one-dimensional (Q1D) method resolves a single spatial dimension while modeling two-dimensional effects. The implementation of this method in a Particle-In-Cell (PIC) code was verified with newly formulated test cases which include two-particle motion and particle dynamics in a magnetic mirror. Results from the Q1D method and fully two dimensional simulations were compared and error analyses performed verifying that the Q1D model reproduces the fully 2D results in the correct regimes. The Q1D method was found to be valid when the hybrid Larmor radius was less than 10% of the magnetic field scale length for magnetic field guided plasma expansions and less than 1% of the magnetic field scale length for a plasma in a converging–diverging magnetic field. The simple and general Q1D method can readily be incorporated in standard 1D PIC codes to capture multi-dimensional effects for plasma flow along magnetic fields in parameter spaces currently inaccessible by fully kinetic methods.
doi_str_mv 10.1016/j.jcp.2017.09.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2069502706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999117306800</els_id><sourcerecordid>2069502706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-c8a5e484c2f5e7b11cb931995fa15d215b2b851a8a43efb8745e9f4fb51d18293</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD5-gLuA69bctGkbXMngCwfd6Dqk6c2Y0pdJxse_t0Ndu7pwOd_h8BFyASwFBsVVm7ZmSjmDMmUyZRwOyAqYZAkvoTgkKza_EiklHJOTEFrGWCXyakWen9yA0RkaXL_rdHTjQCOa98F97JDa0dOp06HX1HbjF3UDDdGPw5bid0Q_6I72ersUWIddc0aOrO4Cnv_dU_J2d_u6fkg2L_eP65tNYvIsj4mptMC8yg23AssawNQyAymF1SAaDqLmdSVAVzrP0NZVmQuUNre1gAYqLrNTcrn0Tn6ch4ao2nG33xMUZ4UUjJesmFOwpIwfQ_Bo1eRdr_2PAqb22lSrZm1qr00xqWZHM3O9MDjP_3ToVTAOB4ON82iiakb3D_0LrE91lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069502706</pqid></control><display><type>article</type><title>Kinetic simulation technique for plasma flow in strong external magnetic field</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ebersohn, Frans H. ; Sheehan, J.P. ; Gallimore, Alec D. ; Shebalin, John V.</creator><creatorcontrib>Ebersohn, Frans H. ; Sheehan, J.P. ; Gallimore, Alec D. ; Shebalin, John V.</creatorcontrib><description>A technique for the kinetic simulation of plasma flow in strong external magnetic fields was developed which captures the compression and expansion of plasma bound to a magnetic flux tube as well as forces on magnetized particles within the flux tube. This quasi-one-dimensional (Q1D) method resolves a single spatial dimension while modeling two-dimensional effects. The implementation of this method in a Particle-In-Cell (PIC) code was verified with newly formulated test cases which include two-particle motion and particle dynamics in a magnetic mirror. Results from the Q1D method and fully two dimensional simulations were compared and error analyses performed verifying that the Q1D model reproduces the fully 2D results in the correct regimes. The Q1D method was found to be valid when the hybrid Larmor radius was less than 10% of the magnetic field scale length for magnetic field guided plasma expansions and less than 1% of the magnetic field scale length for a plasma in a converging–diverging magnetic field. The simple and general Q1D method can readily be incorporated in standard 1D PIC codes to capture multi-dimensional effects for plasma flow along magnetic fields in parameter spaces currently inaccessible by fully kinetic methods.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2017.09.021</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Compressive strength ; Computational physics ; Computer simulation ; Error analysis ; Flux tube ; Kinetic ; Kinetics ; Larmor radius ; Magnetic fields ; Magnetic flux ; Magnetic mirror ; Magnetized ; Modeling ; Particle in cell technique ; Particle motion ; Particle-in-cell ; Plasma ; Plasma physics ; Quasi-one-dimensional ; Simulation ; Two dimensional analysis ; Two dimensional models</subject><ispartof>Journal of computational physics, 2017-12, Vol.351, p.358-375</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Dec 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-c8a5e484c2f5e7b11cb931995fa15d215b2b851a8a43efb8745e9f4fb51d18293</citedby><cites>FETCH-LOGICAL-c434t-c8a5e484c2f5e7b11cb931995fa15d215b2b851a8a43efb8745e9f4fb51d18293</cites><orcidid>0000-0001-9741-1997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2017.09.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ebersohn, Frans H.</creatorcontrib><creatorcontrib>Sheehan, J.P.</creatorcontrib><creatorcontrib>Gallimore, Alec D.</creatorcontrib><creatorcontrib>Shebalin, John V.</creatorcontrib><title>Kinetic simulation technique for plasma flow in strong external magnetic field</title><title>Journal of computational physics</title><description>A technique for the kinetic simulation of plasma flow in strong external magnetic fields was developed which captures the compression and expansion of plasma bound to a magnetic flux tube as well as forces on magnetized particles within the flux tube. This quasi-one-dimensional (Q1D) method resolves a single spatial dimension while modeling two-dimensional effects. The implementation of this method in a Particle-In-Cell (PIC) code was verified with newly formulated test cases which include two-particle motion and particle dynamics in a magnetic mirror. Results from the Q1D method and fully two dimensional simulations were compared and error analyses performed verifying that the Q1D model reproduces the fully 2D results in the correct regimes. The Q1D method was found to be valid when the hybrid Larmor radius was less than 10% of the magnetic field scale length for magnetic field guided plasma expansions and less than 1% of the magnetic field scale length for a plasma in a converging–diverging magnetic field. The simple and general Q1D method can readily be incorporated in standard 1D PIC codes to capture multi-dimensional effects for plasma flow along magnetic fields in parameter spaces currently inaccessible by fully kinetic methods.</description><subject>Compressive strength</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Error analysis</subject><subject>Flux tube</subject><subject>Kinetic</subject><subject>Kinetics</subject><subject>Larmor radius</subject><subject>Magnetic fields</subject><subject>Magnetic flux</subject><subject>Magnetic mirror</subject><subject>Magnetized</subject><subject>Modeling</subject><subject>Particle in cell technique</subject><subject>Particle motion</subject><subject>Particle-in-cell</subject><subject>Plasma</subject><subject>Plasma physics</subject><subject>Quasi-one-dimensional</subject><subject>Simulation</subject><subject>Two dimensional analysis</subject><subject>Two dimensional models</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD5-gLuA69bctGkbXMngCwfd6Dqk6c2Y0pdJxse_t0Ndu7pwOd_h8BFyASwFBsVVm7ZmSjmDMmUyZRwOyAqYZAkvoTgkKza_EiklHJOTEFrGWCXyakWen9yA0RkaXL_rdHTjQCOa98F97JDa0dOp06HX1HbjF3UDDdGPw5bid0Q_6I72ersUWIddc0aOrO4Cnv_dU_J2d_u6fkg2L_eP65tNYvIsj4mptMC8yg23AssawNQyAymF1SAaDqLmdSVAVzrP0NZVmQuUNre1gAYqLrNTcrn0Tn6ch4ao2nG33xMUZ4UUjJesmFOwpIwfQ_Bo1eRdr_2PAqb22lSrZm1qr00xqWZHM3O9MDjP_3ToVTAOB4ON82iiakb3D_0LrE91lg</recordid><startdate>20171215</startdate><enddate>20171215</enddate><creator>Ebersohn, Frans H.</creator><creator>Sheehan, J.P.</creator><creator>Gallimore, Alec D.</creator><creator>Shebalin, John V.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9741-1997</orcidid></search><sort><creationdate>20171215</creationdate><title>Kinetic simulation technique for plasma flow in strong external magnetic field</title><author>Ebersohn, Frans H. ; Sheehan, J.P. ; Gallimore, Alec D. ; Shebalin, John V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-c8a5e484c2f5e7b11cb931995fa15d215b2b851a8a43efb8745e9f4fb51d18293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Compressive strength</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Error analysis</topic><topic>Flux tube</topic><topic>Kinetic</topic><topic>Kinetics</topic><topic>Larmor radius</topic><topic>Magnetic fields</topic><topic>Magnetic flux</topic><topic>Magnetic mirror</topic><topic>Magnetized</topic><topic>Modeling</topic><topic>Particle in cell technique</topic><topic>Particle motion</topic><topic>Particle-in-cell</topic><topic>Plasma</topic><topic>Plasma physics</topic><topic>Quasi-one-dimensional</topic><topic>Simulation</topic><topic>Two dimensional analysis</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ebersohn, Frans H.</creatorcontrib><creatorcontrib>Sheehan, J.P.</creatorcontrib><creatorcontrib>Gallimore, Alec D.</creatorcontrib><creatorcontrib>Shebalin, John V.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ebersohn, Frans H.</au><au>Sheehan, J.P.</au><au>Gallimore, Alec D.</au><au>Shebalin, John V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic simulation technique for plasma flow in strong external magnetic field</atitle><jtitle>Journal of computational physics</jtitle><date>2017-12-15</date><risdate>2017</risdate><volume>351</volume><spage>358</spage><epage>375</epage><pages>358-375</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A technique for the kinetic simulation of plasma flow in strong external magnetic fields was developed which captures the compression and expansion of plasma bound to a magnetic flux tube as well as forces on magnetized particles within the flux tube. This quasi-one-dimensional (Q1D) method resolves a single spatial dimension while modeling two-dimensional effects. The implementation of this method in a Particle-In-Cell (PIC) code was verified with newly formulated test cases which include two-particle motion and particle dynamics in a magnetic mirror. Results from the Q1D method and fully two dimensional simulations were compared and error analyses performed verifying that the Q1D model reproduces the fully 2D results in the correct regimes. The Q1D method was found to be valid when the hybrid Larmor radius was less than 10% of the magnetic field scale length for magnetic field guided plasma expansions and less than 1% of the magnetic field scale length for a plasma in a converging–diverging magnetic field. The simple and general Q1D method can readily be incorporated in standard 1D PIC codes to capture multi-dimensional effects for plasma flow along magnetic fields in parameter spaces currently inaccessible by fully kinetic methods.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2017.09.021</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9741-1997</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2017-12, Vol.351, p.358-375
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2069502706
source Elsevier ScienceDirect Journals Complete
subjects Compressive strength
Computational physics
Computer simulation
Error analysis
Flux tube
Kinetic
Kinetics
Larmor radius
Magnetic fields
Magnetic flux
Magnetic mirror
Magnetized
Modeling
Particle in cell technique
Particle motion
Particle-in-cell
Plasma
Plasma physics
Quasi-one-dimensional
Simulation
Two dimensional analysis
Two dimensional models
title Kinetic simulation technique for plasma flow in strong external magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A27%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20simulation%20technique%20for%20plasma%20flow%20in%20strong%20external%20magnetic%20field&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Ebersohn,%20Frans%20H.&rft.date=2017-12-15&rft.volume=351&rft.spage=358&rft.epage=375&rft.pages=358-375&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2017.09.021&rft_dat=%3Cproquest_cross%3E2069502706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069502706&rft_id=info:pmid/&rft_els_id=S0021999117306800&rfr_iscdi=true