Critical zinc ion concentration on the electrode surface determines dendritic zinc growth during charging a zinc air battery

Zinc-air batteries have a great potential to be the next generation of secondary batteries. They exhibit a high volume and mass specific power density due to the use of oxygen, which can be taken directly from air. Compared to other anodes used in rechargeable batteries, zinc offers many advantages...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2018-04, Vol.269, p.217-224
Hauptverfasser: Riede, Jens-Christian, Turek, Thomas, Kunz, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue
container_start_page 217
container_title Electrochimica acta
container_volume 269
creator Riede, Jens-Christian
Turek, Thomas
Kunz, Ulrich
description Zinc-air batteries have a great potential to be the next generation of secondary batteries. They exhibit a high volume and mass specific power density due to the use of oxygen, which can be taken directly from air. Compared to other anodes used in rechargeable batteries, zinc offers many advantages including low cost and environmental friendliness. Unfortunately, morphological changes occur in the zinc electrode after a few charge and discharge cycles which lead to formation of needle-shaped zinc structures (dendrites). Despite many studies about suppressing dendrites by using additives in the electrolyte, no technically feasible solution could be found until today. In this contribution the influence of zinc ion concentrations in the electrolyte at the electrode surface on the dendrite formation is investigated. It is shown that dendritic zinc crystals only occur if the surface concentration of zinc ions falls below a critical value. With the knowledge of this critical surface concentration the time before growth of dendritic zinc starts can be prolonged by pulsed deposition of zinc. Moreover, dendrite growth can be completely avoided in a flow system at an appropriate flow rate in combination with a pulsed current charging procedure. With this approach the favored boulder structures were obtained with current densities up to 80 mA cm−2 and for deposition times up to 1800 s.
doi_str_mv 10.1016/j.electacta.2018.02.110
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2069500759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468618304146</els_id><sourcerecordid>2069500759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-93e3849328962a403f2941f28442c381e21a805b2d48d91ac61455b9ad34f7143</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYMouF5-gwGfW3NrmzzK4g0EX_Q5ZJPpbpa11UlWUfzxZq34KgzMhDnnDPkIOeOs5oy3F-saNuCzK1ULxnXNRM052yMzrjtZSd2YfTJjjMtKtbo9JEcprRljXduxGfmaY8zRuw39jIOncRyoHwcPQ0aXd69SeQX05waOAWjaYu880AAZ8DkOkMo4hJ-YKWSJ43te0bDFOCypXzlc7gY3bV1EunC5mD9OyEHvNglOf_sxebq-epzfVvcPN3fzy_vKK9XmykiQWhkptGmFU0z2wijeC62U8FJzENxp1ixEUDoY7nzLVdMsjAtS9R1X8picT7kvOL5uIWW7Hrc4lJNWsNY0BUZjiqqbVB7HlBB6-4Lx2eGH5czuUNu1_UNtd6gtE7agLs7LyQnlE28R0CYfoVAMEYvehjH-m_EN6aCMnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069500759</pqid></control><display><type>article</type><title>Critical zinc ion concentration on the electrode surface determines dendritic zinc growth during charging a zinc air battery</title><source>Elsevier ScienceDirect Journals</source><creator>Riede, Jens-Christian ; Turek, Thomas ; Kunz, Ulrich</creator><creatorcontrib>Riede, Jens-Christian ; Turek, Thomas ; Kunz, Ulrich</creatorcontrib><description>Zinc-air batteries have a great potential to be the next generation of secondary batteries. They exhibit a high volume and mass specific power density due to the use of oxygen, which can be taken directly from air. Compared to other anodes used in rechargeable batteries, zinc offers many advantages including low cost and environmental friendliness. Unfortunately, morphological changes occur in the zinc electrode after a few charge and discharge cycles which lead to formation of needle-shaped zinc structures (dendrites). Despite many studies about suppressing dendrites by using additives in the electrolyte, no technically feasible solution could be found until today. In this contribution the influence of zinc ion concentrations in the electrolyte at the electrode surface on the dendrite formation is investigated. It is shown that dendritic zinc crystals only occur if the surface concentration of zinc ions falls below a critical value. With the knowledge of this critical surface concentration the time before growth of dendritic zinc starts can be prolonged by pulsed deposition of zinc. Moreover, dendrite growth can be completely avoided in a flow system at an appropriate flow rate in combination with a pulsed current charging procedure. With this approach the favored boulder structures were obtained with current densities up to 80 mA cm−2 and for deposition times up to 1800 s.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2018.02.110</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Additives ; Alkaline electrolyte ; Batteries ; Charging ; Dendritic growth ; Dendritic structure ; Deposition ; Electrodes ; Electrolytes ; Flow velocity ; Ion concentration ; Ions ; Metal air batteries ; Pulse techniques ; Pulsed current ; Rechargeable batteries ; Secondary zinc-air battery ; Storage batteries ; Volume ; Zinc ; Zinc ion concentration ; Zinc-oxygen batteries</subject><ispartof>Electrochimica acta, 2018-04, Vol.269, p.217-224</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 10, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-93e3849328962a403f2941f28442c381e21a805b2d48d91ac61455b9ad34f7143</citedby><cites>FETCH-LOGICAL-c446t-93e3849328962a403f2941f28442c381e21a805b2d48d91ac61455b9ad34f7143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2018.02.110$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Riede, Jens-Christian</creatorcontrib><creatorcontrib>Turek, Thomas</creatorcontrib><creatorcontrib>Kunz, Ulrich</creatorcontrib><title>Critical zinc ion concentration on the electrode surface determines dendritic zinc growth during charging a zinc air battery</title><title>Electrochimica acta</title><description>Zinc-air batteries have a great potential to be the next generation of secondary batteries. They exhibit a high volume and mass specific power density due to the use of oxygen, which can be taken directly from air. Compared to other anodes used in rechargeable batteries, zinc offers many advantages including low cost and environmental friendliness. Unfortunately, morphological changes occur in the zinc electrode after a few charge and discharge cycles which lead to formation of needle-shaped zinc structures (dendrites). Despite many studies about suppressing dendrites by using additives in the electrolyte, no technically feasible solution could be found until today. In this contribution the influence of zinc ion concentrations in the electrolyte at the electrode surface on the dendrite formation is investigated. It is shown that dendritic zinc crystals only occur if the surface concentration of zinc ions falls below a critical value. With the knowledge of this critical surface concentration the time before growth of dendritic zinc starts can be prolonged by pulsed deposition of zinc. Moreover, dendrite growth can be completely avoided in a flow system at an appropriate flow rate in combination with a pulsed current charging procedure. With this approach the favored boulder structures were obtained with current densities up to 80 mA cm−2 and for deposition times up to 1800 s.</description><subject>Additives</subject><subject>Alkaline electrolyte</subject><subject>Batteries</subject><subject>Charging</subject><subject>Dendritic growth</subject><subject>Dendritic structure</subject><subject>Deposition</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Flow velocity</subject><subject>Ion concentration</subject><subject>Ions</subject><subject>Metal air batteries</subject><subject>Pulse techniques</subject><subject>Pulsed current</subject><subject>Rechargeable batteries</subject><subject>Secondary zinc-air battery</subject><subject>Storage batteries</subject><subject>Volume</subject><subject>Zinc</subject><subject>Zinc ion concentration</subject><subject>Zinc-oxygen batteries</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLxDAQhYMouF5-gwGfW3NrmzzK4g0EX_Q5ZJPpbpa11UlWUfzxZq34KgzMhDnnDPkIOeOs5oy3F-saNuCzK1ULxnXNRM052yMzrjtZSd2YfTJjjMtKtbo9JEcprRljXduxGfmaY8zRuw39jIOncRyoHwcPQ0aXd69SeQX05waOAWjaYu880AAZ8DkOkMo4hJ-YKWSJ43te0bDFOCypXzlc7gY3bV1EunC5mD9OyEHvNglOf_sxebq-epzfVvcPN3fzy_vKK9XmykiQWhkptGmFU0z2wijeC62U8FJzENxp1ixEUDoY7nzLVdMsjAtS9R1X8picT7kvOL5uIWW7Hrc4lJNWsNY0BUZjiqqbVB7HlBB6-4Lx2eGH5czuUNu1_UNtd6gtE7agLs7LyQnlE28R0CYfoVAMEYvehjH-m_EN6aCMnA</recordid><startdate>20180410</startdate><enddate>20180410</enddate><creator>Riede, Jens-Christian</creator><creator>Turek, Thomas</creator><creator>Kunz, Ulrich</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180410</creationdate><title>Critical zinc ion concentration on the electrode surface determines dendritic zinc growth during charging a zinc air battery</title><author>Riede, Jens-Christian ; Turek, Thomas ; Kunz, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-93e3849328962a403f2941f28442c381e21a805b2d48d91ac61455b9ad34f7143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Additives</topic><topic>Alkaline electrolyte</topic><topic>Batteries</topic><topic>Charging</topic><topic>Dendritic growth</topic><topic>Dendritic structure</topic><topic>Deposition</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Flow velocity</topic><topic>Ion concentration</topic><topic>Ions</topic><topic>Metal air batteries</topic><topic>Pulse techniques</topic><topic>Pulsed current</topic><topic>Rechargeable batteries</topic><topic>Secondary zinc-air battery</topic><topic>Storage batteries</topic><topic>Volume</topic><topic>Zinc</topic><topic>Zinc ion concentration</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riede, Jens-Christian</creatorcontrib><creatorcontrib>Turek, Thomas</creatorcontrib><creatorcontrib>Kunz, Ulrich</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riede, Jens-Christian</au><au>Turek, Thomas</au><au>Kunz, Ulrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical zinc ion concentration on the electrode surface determines dendritic zinc growth during charging a zinc air battery</atitle><jtitle>Electrochimica acta</jtitle><date>2018-04-10</date><risdate>2018</risdate><volume>269</volume><spage>217</spage><epage>224</epage><pages>217-224</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Zinc-air batteries have a great potential to be the next generation of secondary batteries. They exhibit a high volume and mass specific power density due to the use of oxygen, which can be taken directly from air. Compared to other anodes used in rechargeable batteries, zinc offers many advantages including low cost and environmental friendliness. Unfortunately, morphological changes occur in the zinc electrode after a few charge and discharge cycles which lead to formation of needle-shaped zinc structures (dendrites). Despite many studies about suppressing dendrites by using additives in the electrolyte, no technically feasible solution could be found until today. In this contribution the influence of zinc ion concentrations in the electrolyte at the electrode surface on the dendrite formation is investigated. It is shown that dendritic zinc crystals only occur if the surface concentration of zinc ions falls below a critical value. With the knowledge of this critical surface concentration the time before growth of dendritic zinc starts can be prolonged by pulsed deposition of zinc. Moreover, dendrite growth can be completely avoided in a flow system at an appropriate flow rate in combination with a pulsed current charging procedure. With this approach the favored boulder structures were obtained with current densities up to 80 mA cm−2 and for deposition times up to 1800 s.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2018.02.110</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2018-04, Vol.269, p.217-224
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2069500759
source Elsevier ScienceDirect Journals
subjects Additives
Alkaline electrolyte
Batteries
Charging
Dendritic growth
Dendritic structure
Deposition
Electrodes
Electrolytes
Flow velocity
Ion concentration
Ions
Metal air batteries
Pulse techniques
Pulsed current
Rechargeable batteries
Secondary zinc-air battery
Storage batteries
Volume
Zinc
Zinc ion concentration
Zinc-oxygen batteries
title Critical zinc ion concentration on the electrode surface determines dendritic zinc growth during charging a zinc air battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20zinc%20ion%20concentration%20on%20the%20electrode%20surface%20determines%20dendritic%20zinc%20growth%20during%20charging%20a%20zinc%20air%20battery&rft.jtitle=Electrochimica%20acta&rft.au=Riede,%20Jens-Christian&rft.date=2018-04-10&rft.volume=269&rft.spage=217&rft.epage=224&rft.pages=217-224&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2018.02.110&rft_dat=%3Cproquest_cross%3E2069500759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069500759&rft_id=info:pmid/&rft_els_id=S0013468618304146&rfr_iscdi=true