Parametric study of fluid–solid interaction for single-particle dissipative particle dynamics model
In this paper, a parametric study of fluid–solid interaction for single-particle dissipative particle dynamics (DPD) model is conducted to describe the hydrodynamic interactions in a large range of particle sizes. To successfully reproduce the hydrodynamics for different particle sizes, and overcome...
Gespeichert in:
Veröffentlicht in: | Microfluidics and nanofluidics 2018-08, Vol.22 (8), p.1-14, Article 78 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | Microfluidics and nanofluidics |
container_volume | 22 |
creator | Wang, Yi Ouyang, Jie Li, Yanggui |
description | In this paper, a parametric study of fluid–solid interaction for single-particle dissipative particle dynamics (DPD) model is conducted to describe the hydrodynamic interactions in a large range of particle sizes. To successfully reproduce the hydrodynamics for different particle sizes, and overcome the problem that effective radius of solid sphere does not match its real radius, the cut-off radius and conservative force coefficient of single-particle DPD model have been modified. The cut-off radius and conservative force coefficient are related to the drag force and radial distribution function, so that, for each particle size, they can be determined by DPD simulations. Through numerical fitting, two empirical formulas as a function of spherical radius are developed to calculate the cut-off radius and conservative force coefficient. Numerical results indicate that the single-particle DPD model is, indeed, capable of capturing low Reynolds number hydrodynamic interactions for different particle sizes by selecting these model parameters reasonably. Specifically, the model can not only insure that drag force and torque are quantitatively consistent with theoretical results, but also guarantee the effective radius matches well its real radius. In addition, the shear dissipative force is the major part of drag force and should not be ignored. This study will help to improve the application range of single-particle DPD model to make it suitable for different particle sizes and provide parameter guidance for studying fluid–solid interaction using single-particle DPD model. |
doi_str_mv | 10.1007/s10404-018-2099-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2069312960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2069312960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a393e7fff373874f3749e493d6ef056de2039549ee68edea4d04ebed1c7896ef3</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI4-gLuA6-hNk2mbpQz-gaALXYfY3AwZ2mZMUmF2voNv6JPYoeKsXJ3L4TvnwiHknMMlB6iuEgcJkgGvWQFKMXlAZrzkgkml4PDvrotjcpLSGkBWBYcZwWcTTYc5-oamPNgtDY66dvD2-_MrhdZb6vuM0TTZh566EGny_apFtjEx-6ZFan1KfmOy_0C6N7e96XyTaBcstqfkyJk24dmvzsnr7c3L8p49Pt09LK8fWSN4mZkRSmDlnBOVqCs5ilQolbAlOliUFgsQajF6WNZo0UgLEt_Q8qaq1ciIObmYejcxvA-Ysl6HIfbjS11AqQQvVAkjxSeqiSGliE5vou9M3GoOeremntbU45p6t6aWY6aYMmlk-xXGffP_oR_9y3q6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069312960</pqid></control><display><type>article</type><title>Parametric study of fluid–solid interaction for single-particle dissipative particle dynamics model</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Yi ; Ouyang, Jie ; Li, Yanggui</creator><creatorcontrib>Wang, Yi ; Ouyang, Jie ; Li, Yanggui</creatorcontrib><description>In this paper, a parametric study of fluid–solid interaction for single-particle dissipative particle dynamics (DPD) model is conducted to describe the hydrodynamic interactions in a large range of particle sizes. To successfully reproduce the hydrodynamics for different particle sizes, and overcome the problem that effective radius of solid sphere does not match its real radius, the cut-off radius and conservative force coefficient of single-particle DPD model have been modified. The cut-off radius and conservative force coefficient are related to the drag force and radial distribution function, so that, for each particle size, they can be determined by DPD simulations. Through numerical fitting, two empirical formulas as a function of spherical radius are developed to calculate the cut-off radius and conservative force coefficient. Numerical results indicate that the single-particle DPD model is, indeed, capable of capturing low Reynolds number hydrodynamic interactions for different particle sizes by selecting these model parameters reasonably. Specifically, the model can not only insure that drag force and torque are quantitatively consistent with theoretical results, but also guarantee the effective radius matches well its real radius. In addition, the shear dissipative force is the major part of drag force and should not be ignored. This study will help to improve the application range of single-particle DPD model to make it suitable for different particle sizes and provide parameter guidance for studying fluid–solid interaction using single-particle DPD model.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-018-2099-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Biomedical Engineering and Bioengineering ; Coefficients ; Computational fluid dynamics ; Computer simulation ; Dissipation ; Distribution functions ; Drag ; Dynamics ; Engineering ; Engineering Fluid Dynamics ; Fluid flow ; Force distribution ; Hydrodynamics ; Interactions ; Mathematical models ; Nanotechnology and Microengineering ; Parameters ; Parametric statistics ; Particle size distribution ; Radial distribution ; Research Paper ; Reynolds number ; Stress concentration ; Torque</subject><ispartof>Microfluidics and nanofluidics, 2018-08, Vol.22 (8), p.1-14, Article 78</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Microfluidics and Nanofluidics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a393e7fff373874f3749e493d6ef056de2039549ee68edea4d04ebed1c7896ef3</citedby><cites>FETCH-LOGICAL-c316t-a393e7fff373874f3749e493d6ef056de2039549ee68edea4d04ebed1c7896ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-018-2099-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-018-2099-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Ouyang, Jie</creatorcontrib><creatorcontrib>Li, Yanggui</creatorcontrib><title>Parametric study of fluid–solid interaction for single-particle dissipative particle dynamics model</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>In this paper, a parametric study of fluid–solid interaction for single-particle dissipative particle dynamics (DPD) model is conducted to describe the hydrodynamic interactions in a large range of particle sizes. To successfully reproduce the hydrodynamics for different particle sizes, and overcome the problem that effective radius of solid sphere does not match its real radius, the cut-off radius and conservative force coefficient of single-particle DPD model have been modified. The cut-off radius and conservative force coefficient are related to the drag force and radial distribution function, so that, for each particle size, they can be determined by DPD simulations. Through numerical fitting, two empirical formulas as a function of spherical radius are developed to calculate the cut-off radius and conservative force coefficient. Numerical results indicate that the single-particle DPD model is, indeed, capable of capturing low Reynolds number hydrodynamic interactions for different particle sizes by selecting these model parameters reasonably. Specifically, the model can not only insure that drag force and torque are quantitatively consistent with theoretical results, but also guarantee the effective radius matches well its real radius. In addition, the shear dissipative force is the major part of drag force and should not be ignored. This study will help to improve the application range of single-particle DPD model to make it suitable for different particle sizes and provide parameter guidance for studying fluid–solid interaction using single-particle DPD model.</description><subject>Analytical Chemistry</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Coefficients</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Dissipation</subject><subject>Distribution functions</subject><subject>Drag</subject><subject>Dynamics</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Fluid flow</subject><subject>Force distribution</subject><subject>Hydrodynamics</subject><subject>Interactions</subject><subject>Mathematical models</subject><subject>Nanotechnology and Microengineering</subject><subject>Parameters</subject><subject>Parametric statistics</subject><subject>Particle size distribution</subject><subject>Radial distribution</subject><subject>Research Paper</subject><subject>Reynolds number</subject><subject>Stress concentration</subject><subject>Torque</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1KxDAUhYMoOI4-gLuA6-hNk2mbpQz-gaALXYfY3AwZ2mZMUmF2voNv6JPYoeKsXJ3L4TvnwiHknMMlB6iuEgcJkgGvWQFKMXlAZrzkgkml4PDvrotjcpLSGkBWBYcZwWcTTYc5-oamPNgtDY66dvD2-_MrhdZb6vuM0TTZh566EGny_apFtjEx-6ZFan1KfmOy_0C6N7e96XyTaBcstqfkyJk24dmvzsnr7c3L8p49Pt09LK8fWSN4mZkRSmDlnBOVqCs5ilQolbAlOliUFgsQajF6WNZo0UgLEt_Q8qaq1ciIObmYejcxvA-Ysl6HIfbjS11AqQQvVAkjxSeqiSGliE5vou9M3GoOeremntbU45p6t6aWY6aYMmlk-xXGffP_oR_9y3q6</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Wang, Yi</creator><creator>Ouyang, Jie</creator><creator>Li, Yanggui</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope></search><sort><creationdate>20180801</creationdate><title>Parametric study of fluid–solid interaction for single-particle dissipative particle dynamics model</title><author>Wang, Yi ; Ouyang, Jie ; Li, Yanggui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a393e7fff373874f3749e493d6ef056de2039549ee68edea4d04ebed1c7896ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical Chemistry</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Coefficients</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Dissipation</topic><topic>Distribution functions</topic><topic>Drag</topic><topic>Dynamics</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Fluid flow</topic><topic>Force distribution</topic><topic>Hydrodynamics</topic><topic>Interactions</topic><topic>Mathematical models</topic><topic>Nanotechnology and Microengineering</topic><topic>Parameters</topic><topic>Parametric statistics</topic><topic>Particle size distribution</topic><topic>Radial distribution</topic><topic>Research Paper</topic><topic>Reynolds number</topic><topic>Stress concentration</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Ouyang, Jie</creatorcontrib><creatorcontrib>Li, Yanggui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yi</au><au>Ouyang, Jie</au><au>Li, Yanggui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric study of fluid–solid interaction for single-particle dissipative particle dynamics model</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>22</volume><issue>8</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><artnum>78</artnum><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>In this paper, a parametric study of fluid–solid interaction for single-particle dissipative particle dynamics (DPD) model is conducted to describe the hydrodynamic interactions in a large range of particle sizes. To successfully reproduce the hydrodynamics for different particle sizes, and overcome the problem that effective radius of solid sphere does not match its real radius, the cut-off radius and conservative force coefficient of single-particle DPD model have been modified. The cut-off radius and conservative force coefficient are related to the drag force and radial distribution function, so that, for each particle size, they can be determined by DPD simulations. Through numerical fitting, two empirical formulas as a function of spherical radius are developed to calculate the cut-off radius and conservative force coefficient. Numerical results indicate that the single-particle DPD model is, indeed, capable of capturing low Reynolds number hydrodynamic interactions for different particle sizes by selecting these model parameters reasonably. Specifically, the model can not only insure that drag force and torque are quantitatively consistent with theoretical results, but also guarantee the effective radius matches well its real radius. In addition, the shear dissipative force is the major part of drag force and should not be ignored. This study will help to improve the application range of single-particle DPD model to make it suitable for different particle sizes and provide parameter guidance for studying fluid–solid interaction using single-particle DPD model.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-018-2099-4</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4982 |
ispartof | Microfluidics and nanofluidics, 2018-08, Vol.22 (8), p.1-14, Article 78 |
issn | 1613-4982 1613-4990 |
language | eng |
recordid | cdi_proquest_journals_2069312960 |
source | Springer Nature - Complete Springer Journals |
subjects | Analytical Chemistry Biomedical Engineering and Bioengineering Coefficients Computational fluid dynamics Computer simulation Dissipation Distribution functions Drag Dynamics Engineering Engineering Fluid Dynamics Fluid flow Force distribution Hydrodynamics Interactions Mathematical models Nanotechnology and Microengineering Parameters Parametric statistics Particle size distribution Radial distribution Research Paper Reynolds number Stress concentration Torque |
title | Parametric study of fluid–solid interaction for single-particle dissipative particle dynamics model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20study%20of%20fluid%E2%80%93solid%20interaction%20for%20single-particle%20dissipative%20particle%20dynamics%20model&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Wang,%20Yi&rft.date=2018-08-01&rft.volume=22&rft.issue=8&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.artnum=78&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-018-2099-4&rft_dat=%3Cproquest_cross%3E2069312960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069312960&rft_id=info:pmid/&rfr_iscdi=true |