Effects of lead and lead–melatonin exposure on protein and gene expression of metal transporters, proteins and the copper/zinc ratio in rats
Human lead (Pb) exposure induces many adverse health effects, including some related to lead accumulation in organs. Although lead bio-distribution in the body has been described, the molecular mechanism underlying distribution and excretion is not well understood. The transport of essential and tox...
Gespeichert in:
Veröffentlicht in: | Biometals 2018-10, Vol.31 (5), p.859-871 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 871 |
---|---|
container_issue | 5 |
container_start_page | 859 |
container_title | Biometals |
container_volume | 31 |
creator | Soto-Arredondo, Karla J. Robles, Juvencio Díaz-Cervantes, Erik Ruiz-Ramírez, Carolina García-Revilla, Marco A. Wrobel, Katarzyna Wrobel, Kazimierz Díaz-Muñoz, Mauricio Méndez, Isabel Flores, Alberto Acevedo-Aguilar, Francisco Javier Martínez-Alfaro, Minerva |
description | Human lead (Pb) exposure induces many adverse health effects, including some related to lead accumulation in organs. Although lead bio-distribution in the body has been described, the molecular mechanism underlying distribution and excretion is not well understood. The transport of essential and toxic metals is principally mediated by proteins. How lead affects the expression of metal transporter proteins in the principal metal excretory organs, i.e., the liver and kidney, is unknown. Considering that co-administration of melatonin and lead reduces the toxic effects of lead and lead levels in the blood in vivo, we examined how lead and co-administration of lead and melatonin affect the gene and protein expression of metal transporter proteins (ZIP8, ZIP14, CTR1 and DMT1) in these organs. Rats were exposed intraperitoneally to lead or lead-melatonin. Our results show that Pb exposure induces changes in the protein and gene expression of ZIP8, ZIP14 and CTR1. Alterations in the copper/zinc ratio found in the blood, liver and kidney were likely related to these changes. With DMT1 expression (gene and protein), a positive correlation was found with lead levels in the kidney. Co-administration of melatonin and lead reduced lead-induced DMT1 expression through an unknown mechanism. This effect of melatonin relates to reduced lead levels in the blood and kidney. The metal transport protein function and our results suggest that DMT1 likely contributes to lead accumulation in organs. These data further elucidate the effects of lead on Cu and Zn and the molecular mechanism underlying lead bio-distribution in animals. |
doi_str_mv | 10.1007/s10534-018-0127-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2069212272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2069212272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-98bac3a088ceb74156eaf67a47461f569e384da6489299e229d5910d919f86e3</originalsourceid><addsrcrecordid>eNp1UctKAzEUDaLYWv0ANxJw69gkM5PHUkp9QMFN9yGduVOntMmYpKCu_AI3_qFfYtpaXbkIOdzzuCEHoXNKrikhYhgoKfMiI1Smw0RGD1CfloJlUoj8EPWJ4jwjsih66CSEBSFECcKPUS9PkEsp--hj3DRQxYBdg5dgamxsvQVf758rWJrobGsxvHQurD1gZ3HnXYQ02wjnYGFDegihTVwKWUE0Sxy9saFzPoIPV3tL2HriE-DKdR344VtrK-xNbB1OgQmEU3TUmGWAs597gKa34-noPps83j2MbiZZlQsWMyVnpsoNkbKCmShoycE0XJhCFJw2JVeQy6I2vJCKKQWMqbpUlNSKqkZyyAfochebXva8hhD1wq29TRs1I1wxyphgSUV3qsq7EDw0uvPtyvhXTYneFKB3BehUgN4UoGnyXPwkr2crqH8d-x9PArYThETZOfi_1f-nfgN0ypM3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069212272</pqid></control><display><type>article</type><title>Effects of lead and lead–melatonin exposure on protein and gene expression of metal transporters, proteins and the copper/zinc ratio in rats</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Soto-Arredondo, Karla J. ; Robles, Juvencio ; Díaz-Cervantes, Erik ; Ruiz-Ramírez, Carolina ; García-Revilla, Marco A. ; Wrobel, Katarzyna ; Wrobel, Kazimierz ; Díaz-Muñoz, Mauricio ; Méndez, Isabel ; Flores, Alberto ; Acevedo-Aguilar, Francisco Javier ; Martínez-Alfaro, Minerva</creator><creatorcontrib>Soto-Arredondo, Karla J. ; Robles, Juvencio ; Díaz-Cervantes, Erik ; Ruiz-Ramírez, Carolina ; García-Revilla, Marco A. ; Wrobel, Katarzyna ; Wrobel, Kazimierz ; Díaz-Muñoz, Mauricio ; Méndez, Isabel ; Flores, Alberto ; Acevedo-Aguilar, Francisco Javier ; Martínez-Alfaro, Minerva</creatorcontrib><description>Human lead (Pb) exposure induces many adverse health effects, including some related to lead accumulation in organs. Although lead bio-distribution in the body has been described, the molecular mechanism underlying distribution and excretion is not well understood. The transport of essential and toxic metals is principally mediated by proteins. How lead affects the expression of metal transporter proteins in the principal metal excretory organs, i.e., the liver and kidney, is unknown. Considering that co-administration of melatonin and lead reduces the toxic effects of lead and lead levels in the blood in vivo, we examined how lead and co-administration of lead and melatonin affect the gene and protein expression of metal transporter proteins (ZIP8, ZIP14, CTR1 and DMT1) in these organs. Rats were exposed intraperitoneally to lead or lead-melatonin. Our results show that Pb exposure induces changes in the protein and gene expression of ZIP8, ZIP14 and CTR1. Alterations in the copper/zinc ratio found in the blood, liver and kidney were likely related to these changes. With DMT1 expression (gene and protein), a positive correlation was found with lead levels in the kidney. Co-administration of melatonin and lead reduced lead-induced DMT1 expression through an unknown mechanism. This effect of melatonin relates to reduced lead levels in the blood and kidney. The metal transport protein function and our results suggest that DMT1 likely contributes to lead accumulation in organs. These data further elucidate the effects of lead on Cu and Zn and the molecular mechanism underlying lead bio-distribution in animals.</description><identifier>ISSN: 0966-0844</identifier><identifier>EISSN: 1572-8773</identifier><identifier>DOI: 10.1007/s10534-018-0127-1</identifier><identifier>PMID: 30006888</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Accumulation ; Animals ; Biochemistry ; Biocompatibility ; Biomedical and Life Sciences ; Blood ; Carrier Proteins - biosynthesis ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cell Biology ; Copper ; Copper - analysis ; Divalent metal transporter-1 ; Excretion ; Exposure ; Gene expression ; Gene Expression Regulation - drug effects ; Health risks ; Heavy metals ; Kidneys ; Lead ; Lead - analysis ; Lead - pharmacology ; Lead content ; Life Sciences ; Liver ; Male ; Mass Spectrometry ; Medicine/Public Health ; Melatonin ; Melatonin - analysis ; Melatonin - pharmacology ; Metals ; Microbiology ; Molecular chains ; Organs ; Pharmacology/Toxicology ; Plant Physiology ; Protein transport ; Proteins ; Rats ; Rats, Wistar ; Transport ; Zinc ; Zinc - analysis</subject><ispartof>Biometals, 2018-10, Vol.31 (5), p.859-871</ispartof><rights>Springer Nature B.V. 2018</rights><rights>BioMetals is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-98bac3a088ceb74156eaf67a47461f569e384da6489299e229d5910d919f86e3</citedby><cites>FETCH-LOGICAL-c372t-98bac3a088ceb74156eaf67a47461f569e384da6489299e229d5910d919f86e3</cites><orcidid>0000-0002-4874-3255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10534-018-0127-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10534-018-0127-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30006888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Soto-Arredondo, Karla J.</creatorcontrib><creatorcontrib>Robles, Juvencio</creatorcontrib><creatorcontrib>Díaz-Cervantes, Erik</creatorcontrib><creatorcontrib>Ruiz-Ramírez, Carolina</creatorcontrib><creatorcontrib>García-Revilla, Marco A.</creatorcontrib><creatorcontrib>Wrobel, Katarzyna</creatorcontrib><creatorcontrib>Wrobel, Kazimierz</creatorcontrib><creatorcontrib>Díaz-Muñoz, Mauricio</creatorcontrib><creatorcontrib>Méndez, Isabel</creatorcontrib><creatorcontrib>Flores, Alberto</creatorcontrib><creatorcontrib>Acevedo-Aguilar, Francisco Javier</creatorcontrib><creatorcontrib>Martínez-Alfaro, Minerva</creatorcontrib><title>Effects of lead and lead–melatonin exposure on protein and gene expression of metal transporters, proteins and the copper/zinc ratio in rats</title><title>Biometals</title><addtitle>Biometals</addtitle><addtitle>Biometals</addtitle><description>Human lead (Pb) exposure induces many adverse health effects, including some related to lead accumulation in organs. Although lead bio-distribution in the body has been described, the molecular mechanism underlying distribution and excretion is not well understood. The transport of essential and toxic metals is principally mediated by proteins. How lead affects the expression of metal transporter proteins in the principal metal excretory organs, i.e., the liver and kidney, is unknown. Considering that co-administration of melatonin and lead reduces the toxic effects of lead and lead levels in the blood in vivo, we examined how lead and co-administration of lead and melatonin affect the gene and protein expression of metal transporter proteins (ZIP8, ZIP14, CTR1 and DMT1) in these organs. Rats were exposed intraperitoneally to lead or lead-melatonin. Our results show that Pb exposure induces changes in the protein and gene expression of ZIP8, ZIP14 and CTR1. Alterations in the copper/zinc ratio found in the blood, liver and kidney were likely related to these changes. With DMT1 expression (gene and protein), a positive correlation was found with lead levels in the kidney. Co-administration of melatonin and lead reduced lead-induced DMT1 expression through an unknown mechanism. This effect of melatonin relates to reduced lead levels in the blood and kidney. The metal transport protein function and our results suggest that DMT1 likely contributes to lead accumulation in organs. These data further elucidate the effects of lead on Cu and Zn and the molecular mechanism underlying lead bio-distribution in animals.</description><subject>Accumulation</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biocompatibility</subject><subject>Biomedical and Life Sciences</subject><subject>Blood</subject><subject>Carrier Proteins - biosynthesis</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Biology</subject><subject>Copper</subject><subject>Copper - analysis</subject><subject>Divalent metal transporter-1</subject><subject>Excretion</subject><subject>Exposure</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Health risks</subject><subject>Heavy metals</subject><subject>Kidneys</subject><subject>Lead</subject><subject>Lead - analysis</subject><subject>Lead - pharmacology</subject><subject>Lead content</subject><subject>Life Sciences</subject><subject>Liver</subject><subject>Male</subject><subject>Mass Spectrometry</subject><subject>Medicine/Public Health</subject><subject>Melatonin</subject><subject>Melatonin - analysis</subject><subject>Melatonin - pharmacology</subject><subject>Metals</subject><subject>Microbiology</subject><subject>Molecular chains</subject><subject>Organs</subject><subject>Pharmacology/Toxicology</subject><subject>Plant Physiology</subject><subject>Protein transport</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Transport</subject><subject>Zinc</subject><subject>Zinc - analysis</subject><issn>0966-0844</issn><issn>1572-8773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1UctKAzEUDaLYWv0ANxJw69gkM5PHUkp9QMFN9yGduVOntMmYpKCu_AI3_qFfYtpaXbkIOdzzuCEHoXNKrikhYhgoKfMiI1Smw0RGD1CfloJlUoj8EPWJ4jwjsih66CSEBSFECcKPUS9PkEsp--hj3DRQxYBdg5dgamxsvQVf758rWJrobGsxvHQurD1gZ3HnXYQ02wjnYGFDegihTVwKWUE0Sxy9saFzPoIPV3tL2HriE-DKdR344VtrK-xNbB1OgQmEU3TUmGWAs597gKa34-noPps83j2MbiZZlQsWMyVnpsoNkbKCmShoycE0XJhCFJw2JVeQy6I2vJCKKQWMqbpUlNSKqkZyyAfochebXva8hhD1wq29TRs1I1wxyphgSUV3qsq7EDw0uvPtyvhXTYneFKB3BehUgN4UoGnyXPwkr2crqH8d-x9PArYThETZOfi_1f-nfgN0ypM3</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Soto-Arredondo, Karla J.</creator><creator>Robles, Juvencio</creator><creator>Díaz-Cervantes, Erik</creator><creator>Ruiz-Ramírez, Carolina</creator><creator>García-Revilla, Marco A.</creator><creator>Wrobel, Katarzyna</creator><creator>Wrobel, Kazimierz</creator><creator>Díaz-Muñoz, Mauricio</creator><creator>Méndez, Isabel</creator><creator>Flores, Alberto</creator><creator>Acevedo-Aguilar, Francisco Javier</creator><creator>Martínez-Alfaro, Minerva</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4874-3255</orcidid></search><sort><creationdate>20181001</creationdate><title>Effects of lead and lead–melatonin exposure on protein and gene expression of metal transporters, proteins and the copper/zinc ratio in rats</title><author>Soto-Arredondo, Karla J. ; Robles, Juvencio ; Díaz-Cervantes, Erik ; Ruiz-Ramírez, Carolina ; García-Revilla, Marco A. ; Wrobel, Katarzyna ; Wrobel, Kazimierz ; Díaz-Muñoz, Mauricio ; Méndez, Isabel ; Flores, Alberto ; Acevedo-Aguilar, Francisco Javier ; Martínez-Alfaro, Minerva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-98bac3a088ceb74156eaf67a47461f569e384da6489299e229d5910d919f86e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accumulation</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biocompatibility</topic><topic>Biomedical and Life Sciences</topic><topic>Blood</topic><topic>Carrier Proteins - biosynthesis</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Biology</topic><topic>Copper</topic><topic>Copper - analysis</topic><topic>Divalent metal transporter-1</topic><topic>Excretion</topic><topic>Exposure</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Health risks</topic><topic>Heavy metals</topic><topic>Kidneys</topic><topic>Lead</topic><topic>Lead - analysis</topic><topic>Lead - pharmacology</topic><topic>Lead content</topic><topic>Life Sciences</topic><topic>Liver</topic><topic>Male</topic><topic>Mass Spectrometry</topic><topic>Medicine/Public Health</topic><topic>Melatonin</topic><topic>Melatonin - analysis</topic><topic>Melatonin - pharmacology</topic><topic>Metals</topic><topic>Microbiology</topic><topic>Molecular chains</topic><topic>Organs</topic><topic>Pharmacology/Toxicology</topic><topic>Plant Physiology</topic><topic>Protein transport</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Transport</topic><topic>Zinc</topic><topic>Zinc - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soto-Arredondo, Karla J.</creatorcontrib><creatorcontrib>Robles, Juvencio</creatorcontrib><creatorcontrib>Díaz-Cervantes, Erik</creatorcontrib><creatorcontrib>Ruiz-Ramírez, Carolina</creatorcontrib><creatorcontrib>García-Revilla, Marco A.</creatorcontrib><creatorcontrib>Wrobel, Katarzyna</creatorcontrib><creatorcontrib>Wrobel, Kazimierz</creatorcontrib><creatorcontrib>Díaz-Muñoz, Mauricio</creatorcontrib><creatorcontrib>Méndez, Isabel</creatorcontrib><creatorcontrib>Flores, Alberto</creatorcontrib><creatorcontrib>Acevedo-Aguilar, Francisco Javier</creatorcontrib><creatorcontrib>Martínez-Alfaro, Minerva</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Biometals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soto-Arredondo, Karla J.</au><au>Robles, Juvencio</au><au>Díaz-Cervantes, Erik</au><au>Ruiz-Ramírez, Carolina</au><au>García-Revilla, Marco A.</au><au>Wrobel, Katarzyna</au><au>Wrobel, Kazimierz</au><au>Díaz-Muñoz, Mauricio</au><au>Méndez, Isabel</au><au>Flores, Alberto</au><au>Acevedo-Aguilar, Francisco Javier</au><au>Martínez-Alfaro, Minerva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of lead and lead–melatonin exposure on protein and gene expression of metal transporters, proteins and the copper/zinc ratio in rats</atitle><jtitle>Biometals</jtitle><stitle>Biometals</stitle><addtitle>Biometals</addtitle><date>2018-10-01</date><risdate>2018</risdate><volume>31</volume><issue>5</issue><spage>859</spage><epage>871</epage><pages>859-871</pages><issn>0966-0844</issn><eissn>1572-8773</eissn><abstract>Human lead (Pb) exposure induces many adverse health effects, including some related to lead accumulation in organs. Although lead bio-distribution in the body has been described, the molecular mechanism underlying distribution and excretion is not well understood. The transport of essential and toxic metals is principally mediated by proteins. How lead affects the expression of metal transporter proteins in the principal metal excretory organs, i.e., the liver and kidney, is unknown. Considering that co-administration of melatonin and lead reduces the toxic effects of lead and lead levels in the blood in vivo, we examined how lead and co-administration of lead and melatonin affect the gene and protein expression of metal transporter proteins (ZIP8, ZIP14, CTR1 and DMT1) in these organs. Rats were exposed intraperitoneally to lead or lead-melatonin. Our results show that Pb exposure induces changes in the protein and gene expression of ZIP8, ZIP14 and CTR1. Alterations in the copper/zinc ratio found in the blood, liver and kidney were likely related to these changes. With DMT1 expression (gene and protein), a positive correlation was found with lead levels in the kidney. Co-administration of melatonin and lead reduced lead-induced DMT1 expression through an unknown mechanism. This effect of melatonin relates to reduced lead levels in the blood and kidney. The metal transport protein function and our results suggest that DMT1 likely contributes to lead accumulation in organs. These data further elucidate the effects of lead on Cu and Zn and the molecular mechanism underlying lead bio-distribution in animals.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>30006888</pmid><doi>10.1007/s10534-018-0127-1</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4874-3255</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0966-0844 |
ispartof | Biometals, 2018-10, Vol.31 (5), p.859-871 |
issn | 0966-0844 1572-8773 |
language | eng |
recordid | cdi_proquest_journals_2069212272 |
source | MEDLINE; SpringerLink Journals |
subjects | Accumulation Animals Biochemistry Biocompatibility Biomedical and Life Sciences Blood Carrier Proteins - biosynthesis Carrier Proteins - genetics Carrier Proteins - metabolism Cell Biology Copper Copper - analysis Divalent metal transporter-1 Excretion Exposure Gene expression Gene Expression Regulation - drug effects Health risks Heavy metals Kidneys Lead Lead - analysis Lead - pharmacology Lead content Life Sciences Liver Male Mass Spectrometry Medicine/Public Health Melatonin Melatonin - analysis Melatonin - pharmacology Metals Microbiology Molecular chains Organs Pharmacology/Toxicology Plant Physiology Protein transport Proteins Rats Rats, Wistar Transport Zinc Zinc - analysis |
title | Effects of lead and lead–melatonin exposure on protein and gene expression of metal transporters, proteins and the copper/zinc ratio in rats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A11%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20lead%20and%20lead%E2%80%93melatonin%20exposure%20on%20protein%20and%20gene%20expression%20of%20metal%20transporters,%20proteins%20and%20the%20copper/zinc%20ratio%20in%20rats&rft.jtitle=Biometals&rft.au=Soto-Arredondo,%20Karla%20J.&rft.date=2018-10-01&rft.volume=31&rft.issue=5&rft.spage=859&rft.epage=871&rft.pages=859-871&rft.issn=0966-0844&rft.eissn=1572-8773&rft_id=info:doi/10.1007/s10534-018-0127-1&rft_dat=%3Cproquest_cross%3E2069212272%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069212272&rft_id=info:pmid/30006888&rfr_iscdi=true |