Enhanced double-mechanism creep laws for salt rocks
The double-mechanism creep law (DM model) is an empirical creep constitutive model widely employed in Brazilian salt rock mechanics. This model often presents good performance in steady-state creep prediction. However, transient creep is not accounted for, and whenever early creep estimates are impo...
Gespeichert in:
Veröffentlicht in: | Acta geotechnica 2018-12, Vol.13 (6), p.1329-1340 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1340 |
---|---|
container_issue | 6 |
container_start_page | 1329 |
container_title | Acta geotechnica |
container_volume | 13 |
creator | Firme, Pedro A. L. P. Brandao, Nuno B. Roehl, Deane Romanel, Celso |
description | The double-mechanism creep law (DM model) is an empirical creep constitutive model widely employed in Brazilian salt rock mechanics. This model often presents good performance in steady-state creep prediction. However, transient creep is not accounted for, and whenever early creep estimates are important, the contribution of this phase might be meaningful. This work adds value by presenting two alternatives to account for transient creep in the DM model. The first alternative couples the transient function from Sandia’s multi-mechanism deformation model to the DM model steady-state creep rate (EDMT model). The second alternative couples the DM model response to Norton’s power law when the strain rate given by the latter remains lower than the one from the former (EDMP model). These models can be implemented in numerical simulators at small code extensions of the DM model implementations. Applications from previous works by the authors are revisited to validate the formulations based on experimental data. EDMT and EDMP models differ in the formulation of transient creep and, consequently, in the time of transition between the transient and the steady-state phases. Both methods were successful in treating transient creep and in simulating experimental results. |
doi_str_mv | 10.1007/s11440-018-0689-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2069211076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2069211076</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-7c0b2e5dd525eea6fed539ddd7350caba7d79f9aa511fc2e09b4201387a8f0293</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Fz9GZpE2aoyzrByx40XNIk4nu2m3XpIv47-1S0ZOnGYbnfQcexi4RrhFA32TEsgQOWHNQteH6iM2wVsgRpTz-3UV1ys5y3gAoKUo1Y3LZvbnOUyhCv29a4lvy42Gdt4VPRLuidZ-5iH0qsmuHIvX-PZ-zk-jaTBc_c85e7pbPiwe-erp_XNyuuJPSDFx7aARVIVSiInIqUqikCSFoWYF3jdNBm2icqxCjFwSmKQWgrLWrIwgj5-xq6t2l_mNPebCbfp-68aUVoIxABK1GCifKpz7nRNHu0nrr0pdFsAc3dnJjRzf24MbqMSOmTB7Z7pXSX_P_oW-hUmYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069211076</pqid></control><display><type>article</type><title>Enhanced double-mechanism creep laws for salt rocks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Firme, Pedro A. L. P. ; Brandao, Nuno B. ; Roehl, Deane ; Romanel, Celso</creator><creatorcontrib>Firme, Pedro A. L. P. ; Brandao, Nuno B. ; Roehl, Deane ; Romanel, Celso</creatorcontrib><description>The double-mechanism creep law (DM model) is an empirical creep constitutive model widely employed in Brazilian salt rock mechanics. This model often presents good performance in steady-state creep prediction. However, transient creep is not accounted for, and whenever early creep estimates are important, the contribution of this phase might be meaningful. This work adds value by presenting two alternatives to account for transient creep in the DM model. The first alternative couples the transient function from Sandia’s multi-mechanism deformation model to the DM model steady-state creep rate (EDMT model). The second alternative couples the DM model response to Norton’s power law when the strain rate given by the latter remains lower than the one from the former (EDMP model). These models can be implemented in numerical simulators at small code extensions of the DM model implementations. Applications from previous works by the authors are revisited to validate the formulations based on experimental data. EDMT and EDMP models differ in the formulation of transient creep and, consequently, in the time of transition between the transient and the steady-state phases. Both methods were successful in treating transient creep and in simulating experimental results.</description><identifier>ISSN: 1861-1125</identifier><identifier>EISSN: 1861-1133</identifier><identifier>DOI: 10.1007/s11440-018-0689-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Fluids and Microfluidics ; Computer simulation ; Constitutive models ; Creep rate ; Creep tests ; Deformation ; Deformation mechanisms ; Engineering ; Formulations ; Foundations ; Geoengineering ; Geotechnical Engineering & Applied Earth Sciences ; Hydraulics ; Materials creep ; Mathematical models ; Research Paper ; Rock mechanics ; Rocks ; Simulators ; Soft and Granular Matter ; Soil Science & Conservation ; Solid Mechanics ; Solifluction ; Steady state ; Steady state models ; Strain rate</subject><ispartof>Acta geotechnica, 2018-12, Vol.13 (6), p.1329-1340</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Acta Geotechnica is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-7c0b2e5dd525eea6fed539ddd7350caba7d79f9aa511fc2e09b4201387a8f0293</citedby><cites>FETCH-LOGICAL-a339t-7c0b2e5dd525eea6fed539ddd7350caba7d79f9aa511fc2e09b4201387a8f0293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11440-018-0689-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11440-018-0689-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Firme, Pedro A. L. P.</creatorcontrib><creatorcontrib>Brandao, Nuno B.</creatorcontrib><creatorcontrib>Roehl, Deane</creatorcontrib><creatorcontrib>Romanel, Celso</creatorcontrib><title>Enhanced double-mechanism creep laws for salt rocks</title><title>Acta geotechnica</title><addtitle>Acta Geotech</addtitle><description>The double-mechanism creep law (DM model) is an empirical creep constitutive model widely employed in Brazilian salt rock mechanics. This model often presents good performance in steady-state creep prediction. However, transient creep is not accounted for, and whenever early creep estimates are important, the contribution of this phase might be meaningful. This work adds value by presenting two alternatives to account for transient creep in the DM model. The first alternative couples the transient function from Sandia’s multi-mechanism deformation model to the DM model steady-state creep rate (EDMT model). The second alternative couples the DM model response to Norton’s power law when the strain rate given by the latter remains lower than the one from the former (EDMP model). These models can be implemented in numerical simulators at small code extensions of the DM model implementations. Applications from previous works by the authors are revisited to validate the formulations based on experimental data. EDMT and EDMP models differ in the formulation of transient creep and, consequently, in the time of transition between the transient and the steady-state phases. Both methods were successful in treating transient creep and in simulating experimental results.</description><subject>Complex Fluids and Microfluidics</subject><subject>Computer simulation</subject><subject>Constitutive models</subject><subject>Creep rate</subject><subject>Creep tests</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Engineering</subject><subject>Formulations</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydraulics</subject><subject>Materials creep</subject><subject>Mathematical models</subject><subject>Research Paper</subject><subject>Rock mechanics</subject><subject>Rocks</subject><subject>Simulators</subject><subject>Soft and Granular Matter</subject><subject>Soil Science & Conservation</subject><subject>Solid Mechanics</subject><subject>Solifluction</subject><subject>Steady state</subject><subject>Steady state models</subject><subject>Strain rate</subject><issn>1861-1125</issn><issn>1861-1133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Fz9GZpE2aoyzrByx40XNIk4nu2m3XpIv47-1S0ZOnGYbnfQcexi4RrhFA32TEsgQOWHNQteH6iM2wVsgRpTz-3UV1ys5y3gAoKUo1Y3LZvbnOUyhCv29a4lvy42Gdt4VPRLuidZ-5iH0qsmuHIvX-PZ-zk-jaTBc_c85e7pbPiwe-erp_XNyuuJPSDFx7aARVIVSiInIqUqikCSFoWYF3jdNBm2icqxCjFwSmKQWgrLWrIwgj5-xq6t2l_mNPebCbfp-68aUVoIxABK1GCifKpz7nRNHu0nrr0pdFsAc3dnJjRzf24MbqMSOmTB7Z7pXSX_P_oW-hUmYI</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Firme, Pedro A. L. P.</creator><creator>Brandao, Nuno B.</creator><creator>Roehl, Deane</creator><creator>Romanel, Celso</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20181201</creationdate><title>Enhanced double-mechanism creep laws for salt rocks</title><author>Firme, Pedro A. L. P. ; Brandao, Nuno B. ; Roehl, Deane ; Romanel, Celso</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-7c0b2e5dd525eea6fed539ddd7350caba7d79f9aa511fc2e09b4201387a8f0293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Complex Fluids and Microfluidics</topic><topic>Computer simulation</topic><topic>Constitutive models</topic><topic>Creep rate</topic><topic>Creep tests</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Engineering</topic><topic>Formulations</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydraulics</topic><topic>Materials creep</topic><topic>Mathematical models</topic><topic>Research Paper</topic><topic>Rock mechanics</topic><topic>Rocks</topic><topic>Simulators</topic><topic>Soft and Granular Matter</topic><topic>Soil Science & Conservation</topic><topic>Solid Mechanics</topic><topic>Solifluction</topic><topic>Steady state</topic><topic>Steady state models</topic><topic>Strain rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Firme, Pedro A. L. P.</creatorcontrib><creatorcontrib>Brandao, Nuno B.</creatorcontrib><creatorcontrib>Roehl, Deane</creatorcontrib><creatorcontrib>Romanel, Celso</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta geotechnica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Firme, Pedro A. L. P.</au><au>Brandao, Nuno B.</au><au>Roehl, Deane</au><au>Romanel, Celso</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced double-mechanism creep laws for salt rocks</atitle><jtitle>Acta geotechnica</jtitle><stitle>Acta Geotech</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>13</volume><issue>6</issue><spage>1329</spage><epage>1340</epage><pages>1329-1340</pages><issn>1861-1125</issn><eissn>1861-1133</eissn><abstract>The double-mechanism creep law (DM model) is an empirical creep constitutive model widely employed in Brazilian salt rock mechanics. This model often presents good performance in steady-state creep prediction. However, transient creep is not accounted for, and whenever early creep estimates are important, the contribution of this phase might be meaningful. This work adds value by presenting two alternatives to account for transient creep in the DM model. The first alternative couples the transient function from Sandia’s multi-mechanism deformation model to the DM model steady-state creep rate (EDMT model). The second alternative couples the DM model response to Norton’s power law when the strain rate given by the latter remains lower than the one from the former (EDMP model). These models can be implemented in numerical simulators at small code extensions of the DM model implementations. Applications from previous works by the authors are revisited to validate the formulations based on experimental data. EDMT and EDMP models differ in the formulation of transient creep and, consequently, in the time of transition between the transient and the steady-state phases. Both methods were successful in treating transient creep and in simulating experimental results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11440-018-0689-7</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-1125 |
ispartof | Acta geotechnica, 2018-12, Vol.13 (6), p.1329-1340 |
issn | 1861-1125 1861-1133 |
language | eng |
recordid | cdi_proquest_journals_2069211076 |
source | SpringerLink Journals - AutoHoldings |
subjects | Complex Fluids and Microfluidics Computer simulation Constitutive models Creep rate Creep tests Deformation Deformation mechanisms Engineering Formulations Foundations Geoengineering Geotechnical Engineering & Applied Earth Sciences Hydraulics Materials creep Mathematical models Research Paper Rock mechanics Rocks Simulators Soft and Granular Matter Soil Science & Conservation Solid Mechanics Solifluction Steady state Steady state models Strain rate |
title | Enhanced double-mechanism creep laws for salt rocks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A36%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20double-mechanism%20creep%20laws%20for%20salt%20rocks&rft.jtitle=Acta%20geotechnica&rft.au=Firme,%20Pedro%20A.%20L.%20P.&rft.date=2018-12-01&rft.volume=13&rft.issue=6&rft.spage=1329&rft.epage=1340&rft.pages=1329-1340&rft.issn=1861-1125&rft.eissn=1861-1133&rft_id=info:doi/10.1007/s11440-018-0689-7&rft_dat=%3Cproquest_cross%3E2069211076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069211076&rft_id=info:pmid/&rfr_iscdi=true |