Testing for self-excitation in jumps

This paper extends the notion of self-excitation in jumps to a rich class of continuous time semimartingale models, proposes statistical tests to detect its presence in a discretely observed sample path at high frequency, and derives the tests’ asymptotic properties. Our statistical setting is semip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2018-04, Vol.203 (2), p.256-266
Hauptverfasser: Boswijk, H. Peter, Laeven, Roger J.A., Yang, Xiye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 266
container_issue 2
container_start_page 256
container_title Journal of econometrics
container_volume 203
creator Boswijk, H. Peter
Laeven, Roger J.A.
Yang, Xiye
description This paper extends the notion of self-excitation in jumps to a rich class of continuous time semimartingale models, proposes statistical tests to detect its presence in a discretely observed sample path at high frequency, and derives the tests’ asymptotic properties. Our statistical setting is semiparametric: except for necessary parametric assumptions on the jump size measure, the other components of the semimartingale model are left essentially unrestricted. We analyze the finite sample performance of our tests in Monte Carlo simulations.
doi_str_mv 10.1016/j.jeconom.2017.11.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2069032655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407617302397</els_id><sourcerecordid>2069032655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-3a307aee42bc6e0cfd25bed87fd262f20d1609405222378f65ed08152049d62c3</originalsourceid><addsrcrecordid>eNqFkM1LAzEQxYMoWKt_grCg110n37snEfELCl7qOWyTiWRpNzXZiv73prR3TzOH997M-xFyTaGhQNXd0Axo4xg3DQOqG0obAH1CZrTVrFZtJ0_JDDiIWoBW5-Qi5wEApGj5jNwuMU9h_Kx8TFXGta_xx4apn0IcqzBWw26zzZfkzPfrjFfHOScfz0_Lx9d68f7y9viwqK0ANtW856B7RMFWViFY75hcoWt1WRTzDBxV0AmQjDGuW68kOmipZCA6p5jlc3JzyN2m-LUrj5kh7tJYThoGqgPOlJRFJQ8qm2LOCb3ZprDp06-hYPZAzGCOQMweiKHUFCDFd3_wYanwHTCZbAOOFl1IaCfjYvgn4Q9d72oJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069032655</pqid></control><display><type>article</type><title>Testing for self-excitation in jumps</title><source>Elsevier ScienceDirect Journals</source><creator>Boswijk, H. Peter ; Laeven, Roger J.A. ; Yang, Xiye</creator><creatorcontrib>Boswijk, H. Peter ; Laeven, Roger J.A. ; Yang, Xiye</creatorcontrib><description>This paper extends the notion of self-excitation in jumps to a rich class of continuous time semimartingale models, proposes statistical tests to detect its presence in a discretely observed sample path at high frequency, and derives the tests’ asymptotic properties. Our statistical setting is semiparametric: except for necessary parametric assumptions on the jump size measure, the other components of the semimartingale model are left essentially unrestricted. We analyze the finite sample performance of our tests in Monte Carlo simulations.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2017.11.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic methods ; Discrete sampling ; Econometrics ; Economic crisis ; Financial crisis ; High frequency data ; Jumps ; Monte Carlo simulation ; Self-excitation ; Semimartingale ; Spot jump intensity ; Stochastic models</subject><ispartof>Journal of econometrics, 2018-04, Vol.203 (2), p.256-266</ispartof><rights>2017</rights><rights>Copyright Elsevier Sequoia S.A. Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-3a307aee42bc6e0cfd25bed87fd262f20d1609405222378f65ed08152049d62c3</citedby><cites>FETCH-LOGICAL-c402t-3a307aee42bc6e0cfd25bed87fd262f20d1609405222378f65ed08152049d62c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407617302397$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Boswijk, H. Peter</creatorcontrib><creatorcontrib>Laeven, Roger J.A.</creatorcontrib><creatorcontrib>Yang, Xiye</creatorcontrib><title>Testing for self-excitation in jumps</title><title>Journal of econometrics</title><description>This paper extends the notion of self-excitation in jumps to a rich class of continuous time semimartingale models, proposes statistical tests to detect its presence in a discretely observed sample path at high frequency, and derives the tests’ asymptotic properties. Our statistical setting is semiparametric: except for necessary parametric assumptions on the jump size measure, the other components of the semimartingale model are left essentially unrestricted. We analyze the finite sample performance of our tests in Monte Carlo simulations.</description><subject>Asymptotic methods</subject><subject>Discrete sampling</subject><subject>Econometrics</subject><subject>Economic crisis</subject><subject>Financial crisis</subject><subject>High frequency data</subject><subject>Jumps</subject><subject>Monte Carlo simulation</subject><subject>Self-excitation</subject><subject>Semimartingale</subject><subject>Spot jump intensity</subject><subject>Stochastic models</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LAzEQxYMoWKt_grCg110n37snEfELCl7qOWyTiWRpNzXZiv73prR3TzOH997M-xFyTaGhQNXd0Axo4xg3DQOqG0obAH1CZrTVrFZtJ0_JDDiIWoBW5-Qi5wEApGj5jNwuMU9h_Kx8TFXGta_xx4apn0IcqzBWw26zzZfkzPfrjFfHOScfz0_Lx9d68f7y9viwqK0ANtW856B7RMFWViFY75hcoWt1WRTzDBxV0AmQjDGuW68kOmipZCA6p5jlc3JzyN2m-LUrj5kh7tJYThoGqgPOlJRFJQ8qm2LOCb3ZprDp06-hYPZAzGCOQMweiKHUFCDFd3_wYanwHTCZbAOOFl1IaCfjYvgn4Q9d72oJ</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Boswijk, H. Peter</creator><creator>Laeven, Roger J.A.</creator><creator>Yang, Xiye</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20180401</creationdate><title>Testing for self-excitation in jumps</title><author>Boswijk, H. Peter ; Laeven, Roger J.A. ; Yang, Xiye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-3a307aee42bc6e0cfd25bed87fd262f20d1609405222378f65ed08152049d62c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic methods</topic><topic>Discrete sampling</topic><topic>Econometrics</topic><topic>Economic crisis</topic><topic>Financial crisis</topic><topic>High frequency data</topic><topic>Jumps</topic><topic>Monte Carlo simulation</topic><topic>Self-excitation</topic><topic>Semimartingale</topic><topic>Spot jump intensity</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boswijk, H. Peter</creatorcontrib><creatorcontrib>Laeven, Roger J.A.</creatorcontrib><creatorcontrib>Yang, Xiye</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boswijk, H. Peter</au><au>Laeven, Roger J.A.</au><au>Yang, Xiye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing for self-excitation in jumps</atitle><jtitle>Journal of econometrics</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>203</volume><issue>2</issue><spage>256</spage><epage>266</epage><pages>256-266</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>This paper extends the notion of self-excitation in jumps to a rich class of continuous time semimartingale models, proposes statistical tests to detect its presence in a discretely observed sample path at high frequency, and derives the tests’ asymptotic properties. Our statistical setting is semiparametric: except for necessary parametric assumptions on the jump size measure, the other components of the semimartingale model are left essentially unrestricted. We analyze the finite sample performance of our tests in Monte Carlo simulations.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2017.11.007</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2018-04, Vol.203 (2), p.256-266
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_journals_2069032655
source Elsevier ScienceDirect Journals
subjects Asymptotic methods
Discrete sampling
Econometrics
Economic crisis
Financial crisis
High frequency data
Jumps
Monte Carlo simulation
Self-excitation
Semimartingale
Spot jump intensity
Stochastic models
title Testing for self-excitation in jumps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing%20for%20self-excitation%20in%20jumps&rft.jtitle=Journal%20of%20econometrics&rft.au=Boswijk,%20H.%C2%A0Peter&rft.date=2018-04-01&rft.volume=203&rft.issue=2&rft.spage=256&rft.epage=266&rft.pages=256-266&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2017.11.007&rft_dat=%3Cproquest_cross%3E2069032655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069032655&rft_id=info:pmid/&rft_els_id=S0304407617302397&rfr_iscdi=true