Parameter estimation for grey-box models of building thermal behaviour

•Monte Carlo sampling of parameter space is used to gain cognitive insight into the expected behaviour of estimation algorithms based on numerical optimisation of the mean square error between simulation and measurement data.•Randomised initial guess for numerical optimisation is used to show disper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy and buildings 2018-06, Vol.169, p.58-68
Hauptverfasser: Brastein, O.M., Perera, D.W.U., Pfeifer, C., Skeie, N.-O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue
container_start_page 58
container_title Energy and buildings
container_volume 169
creator Brastein, O.M.
Perera, D.W.U.
Pfeifer, C.
Skeie, N.-O.
description •Monte Carlo sampling of parameter space is used to gain cognitive insight into the expected behaviour of estimation algorithms based on numerical optimisation of the mean square error between simulation and measurement data.•Randomised initial guess for numerical optimisation is used to show dispersion of estimated parameters.•Reduction of degrees of freedom in the estimation is shown to significantly reduce dispersion of estimated parameters.•Model validation on independent data is used to show that calibrated models could be used in a model predictive control system. Good models for building thermal behaviour are an important part of developing building energy management systems that are capable of reducing energy consumption for space heating through model predictive control. A popular approach to modelling the temperature variations of buildings is grey-box models based on lumped parameter thermal networks. By creating simplified models and calibrating their parameters from measurement data, the resulting model is both accurate and shows good generalisation capabilities. Often, parameters of such models are assumed to be a combination of different physical attributes of the building, hence they have some physical interpretation. In this paper, we investigate the dispersion of parameter estimates by use of randomisation. We show that there is significant dispersion in the parameter estimates when using randomised initial conditions for a numerical optimisation algorithm. Further, we claim that in order to assign a physical interpretation to grey-box model parameters, we require the estimated parameters to converge independently of the initial conditions and different datasets. Despite the dispersion of estimated parameters, the prediction capability of calibrated grey-box models is demonstrated by validating the models on independent data. This shows that the models are usable in a model predictive control system.
doi_str_mv 10.1016/j.enbuild.2018.03.057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2069031539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778817331791</els_id><sourcerecordid>2069031539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-6ec318db337e09fd2f6aafdd761bd6599081a77ea3b488dac5e5ac1f2f55bac3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QQh43jXZmI89iRSrQkEPvYdsMmmzbDc1uy3235va3j0NA-_HzIPQPSUlJVQ8tiX0zS50rqwIVSVhJeHyAk2oklUhqFSXaEKYVIWUSl2jm2FoCSGCSzpB8y-TzAZGSBiGMWzMGGKPfUx4leBQNPEHb6KDbsDR47-S0K_wuIa0MR1uYG32Ie7SLbryphvg7jynaDl_Xc7ei8Xn28fsZVFYxuRYCLCMKtfkBUjtXeWFMd45KWjjBK9roqiREgxrnpRyxnLgxlJfec4bY9kUPZxityl-7_LBus3lfW7UFRE1YZSzOqv4SWVTHIYEXm9T_iwdNCX6SEy3-kxMH4lpwnQmln3PJ19-F_YBkh5sgN6CCwnsqF0M_yT8Aj3zeJE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069031539</pqid></control><display><type>article</type><title>Parameter estimation for grey-box models of building thermal behaviour</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Brastein, O.M. ; Perera, D.W.U. ; Pfeifer, C. ; Skeie, N.-O.</creator><creatorcontrib>Brastein, O.M. ; Perera, D.W.U. ; Pfeifer, C. ; Skeie, N.-O.</creatorcontrib><description>•Monte Carlo sampling of parameter space is used to gain cognitive insight into the expected behaviour of estimation algorithms based on numerical optimisation of the mean square error between simulation and measurement data.•Randomised initial guess for numerical optimisation is used to show dispersion of estimated parameters.•Reduction of degrees of freedom in the estimation is shown to significantly reduce dispersion of estimated parameters.•Model validation on independent data is used to show that calibrated models could be used in a model predictive control system. Good models for building thermal behaviour are an important part of developing building energy management systems that are capable of reducing energy consumption for space heating through model predictive control. A popular approach to modelling the temperature variations of buildings is grey-box models based on lumped parameter thermal networks. By creating simplified models and calibrating their parameters from measurement data, the resulting model is both accurate and shows good generalisation capabilities. Often, parameters of such models are assumed to be a combination of different physical attributes of the building, hence they have some physical interpretation. In this paper, we investigate the dispersion of parameter estimates by use of randomisation. We show that there is significant dispersion in the parameter estimates when using randomised initial conditions for a numerical optimisation algorithm. Further, we claim that in order to assign a physical interpretation to grey-box model parameters, we require the estimated parameters to converge independently of the initial conditions and different datasets. Despite the dispersion of estimated parameters, the prediction capability of calibrated grey-box models is demonstrated by validating the models on independent data. This shows that the models are usable in a model predictive control system.</description><identifier>ISSN: 0378-7788</identifier><identifier>EISSN: 1872-6178</identifier><identifier>DOI: 10.1016/j.enbuild.2018.03.057</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Buildings ; Dispersion ; Dispersion of estimated parameters ; Electric power ; Energy consumption ; Energy management systems ; Energy modeling ; Grey-box models ; Initial conditions ; Mathematical models ; Monte Carlo methods ; Monte Carlo simulation ; Optimization algorithms ; Parameter estimation ; Predictive control ; Randomization ; Space heating ; Thermal network model</subject><ispartof>Energy and buildings, 2018-06, Vol.169, p.58-68</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-6ec318db337e09fd2f6aafdd761bd6599081a77ea3b488dac5e5ac1f2f55bac3</citedby><cites>FETCH-LOGICAL-c337t-6ec318db337e09fd2f6aafdd761bd6599081a77ea3b488dac5e5ac1f2f55bac3</cites><orcidid>0000-0001-6358-9308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378778817331791$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Brastein, O.M.</creatorcontrib><creatorcontrib>Perera, D.W.U.</creatorcontrib><creatorcontrib>Pfeifer, C.</creatorcontrib><creatorcontrib>Skeie, N.-O.</creatorcontrib><title>Parameter estimation for grey-box models of building thermal behaviour</title><title>Energy and buildings</title><description>•Monte Carlo sampling of parameter space is used to gain cognitive insight into the expected behaviour of estimation algorithms based on numerical optimisation of the mean square error between simulation and measurement data.•Randomised initial guess for numerical optimisation is used to show dispersion of estimated parameters.•Reduction of degrees of freedom in the estimation is shown to significantly reduce dispersion of estimated parameters.•Model validation on independent data is used to show that calibrated models could be used in a model predictive control system. Good models for building thermal behaviour are an important part of developing building energy management systems that are capable of reducing energy consumption for space heating through model predictive control. A popular approach to modelling the temperature variations of buildings is grey-box models based on lumped parameter thermal networks. By creating simplified models and calibrating their parameters from measurement data, the resulting model is both accurate and shows good generalisation capabilities. Often, parameters of such models are assumed to be a combination of different physical attributes of the building, hence they have some physical interpretation. In this paper, we investigate the dispersion of parameter estimates by use of randomisation. We show that there is significant dispersion in the parameter estimates when using randomised initial conditions for a numerical optimisation algorithm. Further, we claim that in order to assign a physical interpretation to grey-box model parameters, we require the estimated parameters to converge independently of the initial conditions and different datasets. Despite the dispersion of estimated parameters, the prediction capability of calibrated grey-box models is demonstrated by validating the models on independent data. This shows that the models are usable in a model predictive control system.</description><subject>Buildings</subject><subject>Dispersion</subject><subject>Dispersion of estimated parameters</subject><subject>Electric power</subject><subject>Energy consumption</subject><subject>Energy management systems</subject><subject>Energy modeling</subject><subject>Grey-box models</subject><subject>Initial conditions</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Optimization algorithms</subject><subject>Parameter estimation</subject><subject>Predictive control</subject><subject>Randomization</subject><subject>Space heating</subject><subject>Thermal network model</subject><issn>0378-7788</issn><issn>1872-6178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QQh43jXZmI89iRSrQkEPvYdsMmmzbDc1uy3235va3j0NA-_HzIPQPSUlJVQ8tiX0zS50rqwIVSVhJeHyAk2oklUhqFSXaEKYVIWUSl2jm2FoCSGCSzpB8y-TzAZGSBiGMWzMGGKPfUx4leBQNPEHb6KDbsDR47-S0K_wuIa0MR1uYG32Ie7SLbryphvg7jynaDl_Xc7ei8Xn28fsZVFYxuRYCLCMKtfkBUjtXeWFMd45KWjjBK9roqiREgxrnpRyxnLgxlJfec4bY9kUPZxityl-7_LBus3lfW7UFRE1YZSzOqv4SWVTHIYEXm9T_iwdNCX6SEy3-kxMH4lpwnQmln3PJ19-F_YBkh5sgN6CCwnsqF0M_yT8Aj3zeJE</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Brastein, O.M.</creator><creator>Perera, D.W.U.</creator><creator>Pfeifer, C.</creator><creator>Skeie, N.-O.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6358-9308</orcidid></search><sort><creationdate>20180615</creationdate><title>Parameter estimation for grey-box models of building thermal behaviour</title><author>Brastein, O.M. ; Perera, D.W.U. ; Pfeifer, C. ; Skeie, N.-O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-6ec318db337e09fd2f6aafdd761bd6599081a77ea3b488dac5e5ac1f2f55bac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Buildings</topic><topic>Dispersion</topic><topic>Dispersion of estimated parameters</topic><topic>Electric power</topic><topic>Energy consumption</topic><topic>Energy management systems</topic><topic>Energy modeling</topic><topic>Grey-box models</topic><topic>Initial conditions</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Optimization algorithms</topic><topic>Parameter estimation</topic><topic>Predictive control</topic><topic>Randomization</topic><topic>Space heating</topic><topic>Thermal network model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brastein, O.M.</creatorcontrib><creatorcontrib>Perera, D.W.U.</creatorcontrib><creatorcontrib>Pfeifer, C.</creatorcontrib><creatorcontrib>Skeie, N.-O.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brastein, O.M.</au><au>Perera, D.W.U.</au><au>Pfeifer, C.</au><au>Skeie, N.-O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter estimation for grey-box models of building thermal behaviour</atitle><jtitle>Energy and buildings</jtitle><date>2018-06-15</date><risdate>2018</risdate><volume>169</volume><spage>58</spage><epage>68</epage><pages>58-68</pages><issn>0378-7788</issn><eissn>1872-6178</eissn><abstract>•Monte Carlo sampling of parameter space is used to gain cognitive insight into the expected behaviour of estimation algorithms based on numerical optimisation of the mean square error between simulation and measurement data.•Randomised initial guess for numerical optimisation is used to show dispersion of estimated parameters.•Reduction of degrees of freedom in the estimation is shown to significantly reduce dispersion of estimated parameters.•Model validation on independent data is used to show that calibrated models could be used in a model predictive control system. Good models for building thermal behaviour are an important part of developing building energy management systems that are capable of reducing energy consumption for space heating through model predictive control. A popular approach to modelling the temperature variations of buildings is grey-box models based on lumped parameter thermal networks. By creating simplified models and calibrating their parameters from measurement data, the resulting model is both accurate and shows good generalisation capabilities. Often, parameters of such models are assumed to be a combination of different physical attributes of the building, hence they have some physical interpretation. In this paper, we investigate the dispersion of parameter estimates by use of randomisation. We show that there is significant dispersion in the parameter estimates when using randomised initial conditions for a numerical optimisation algorithm. Further, we claim that in order to assign a physical interpretation to grey-box model parameters, we require the estimated parameters to converge independently of the initial conditions and different datasets. Despite the dispersion of estimated parameters, the prediction capability of calibrated grey-box models is demonstrated by validating the models on independent data. This shows that the models are usable in a model predictive control system.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2018.03.057</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6358-9308</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7788
ispartof Energy and buildings, 2018-06, Vol.169, p.58-68
issn 0378-7788
1872-6178
language eng
recordid cdi_proquest_journals_2069031539
source Elsevier ScienceDirect Journals Complete
subjects Buildings
Dispersion
Dispersion of estimated parameters
Electric power
Energy consumption
Energy management systems
Energy modeling
Grey-box models
Initial conditions
Mathematical models
Monte Carlo methods
Monte Carlo simulation
Optimization algorithms
Parameter estimation
Predictive control
Randomization
Space heating
Thermal network model
title Parameter estimation for grey-box models of building thermal behaviour
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A50%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20estimation%20for%20grey-box%20models%20of%20building%20thermal%20behaviour&rft.jtitle=Energy%20and%20buildings&rft.au=Brastein,%20O.M.&rft.date=2018-06-15&rft.volume=169&rft.spage=58&rft.epage=68&rft.pages=58-68&rft.issn=0378-7788&rft.eissn=1872-6178&rft_id=info:doi/10.1016/j.enbuild.2018.03.057&rft_dat=%3Cproquest_cross%3E2069031539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069031539&rft_id=info:pmid/&rft_els_id=S0378778817331791&rfr_iscdi=true