Structural evolution in a metallic glass pillar upon compression

The in-situ observation of structural evolution of a metallic glass pillar during deformation is carried out in a high energy synchrotron X-ray source. The changes of the first maximum in structure factor, S(q), reveal the evolution of atomic structure upon stress. The width of the first maximum in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-04, Vol.721, p.8-13
Hauptverfasser: Tong, X., Wang, G., Bednarčík, J., Jia, Y.D., Hussain, I., Yi, J., Stachurski, Z.H., Zhai, Q.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 8
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 721
creator Tong, X.
Wang, G.
Bednarčík, J.
Jia, Y.D.
Hussain, I.
Yi, J.
Stachurski, Z.H.
Zhai, Q.J.
description The in-situ observation of structural evolution of a metallic glass pillar during deformation is carried out in a high energy synchrotron X-ray source. The changes of the first maximum in structure factor, S(q), reveal the evolution of atomic structure upon stress. The width of the first maximum in S(q) increases as stress increasing during elastic deformation. After the elastic deformation, the serrated flow occurs, in which the width of the first maximum of S(q) in the loading stage of the serration event also increases. The broadening of the first maximum in S(q) means that the stress induces disordering of the glassy phase, which is because the densely packed clusters is separated into many loosely packed ones. This creates the excess free volumes.
doi_str_mv 10.1016/j.msea.2018.02.050
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2069024084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509318302351</els_id><sourcerecordid>2069024084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-b8c33ff1245318436ef4c5724e480ff9dc580fd5caca1dd4d0525ec5f5a3af753</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuC69aTWy_gQhkcFQZcqOsQ0xNJSS8m7YBvb4Zx7epf_Jdz-Ai5plBQoOVtV_QRdcGA1gWwAiSckBWtK56LhpenZAUNo7mEhp-Tixg7AKAC5Ircv81hMfMStM9wP_plduOQuSHTWY-z9t6Z7MvrGLPJea9DtkzJN2M_BYwxZS_JmdU-4tWfrsnH9vF985zvXp9eNg-73PCKzflnbTi3ljIhOa0FL9EKIysmUNRgbdMambSVRhtN21a0IJlEI63UXNtK8jW5Oe5OYfxeMM6qG5cwpJOKQdkAE5Bm14QdUyaMMQa0agqu1-FHUVAHUqpTB1LqQEoBU4lUKt0dS5j-3zsMKhqHg8HWBTSzakf3X_0XQgxyPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069024084</pqid></control><display><type>article</type><title>Structural evolution in a metallic glass pillar upon compression</title><source>Elsevier ScienceDirect Journals</source><creator>Tong, X. ; Wang, G. ; Bednarčík, J. ; Jia, Y.D. ; Hussain, I. ; Yi, J. ; Stachurski, Z.H. ; Zhai, Q.J.</creator><creatorcontrib>Tong, X. ; Wang, G. ; Bednarčík, J. ; Jia, Y.D. ; Hussain, I. ; Yi, J. ; Stachurski, Z.H. ; Zhai, Q.J.</creatorcontrib><description>The in-situ observation of structural evolution of a metallic glass pillar during deformation is carried out in a high energy synchrotron X-ray source. The changes of the first maximum in structure factor, S(q), reveal the evolution of atomic structure upon stress. The width of the first maximum in S(q) increases as stress increasing during elastic deformation. After the elastic deformation, the serrated flow occurs, in which the width of the first maximum of S(q) in the loading stage of the serration event also increases. The broadening of the first maximum in S(q) means that the stress induces disordering of the glassy phase, which is because the densely packed clusters is separated into many loosely packed ones. This creates the excess free volumes.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2018.02.050</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Amorphous materials ; Atomic structure ; Deformation ; Elastic deformation ; Evolution ; Glass ; Glass substrates ; High-energy X-ray diffraction ; Metallic glass ; Metallic glasses ; Microindentation of pillar ; Microstructure ; Serration events ; Stresses ; Structural evolution ; Structure factor ; Synchrotron radiation ; X ray sources</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2018-04, Vol.721, p.8-13</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 4, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-b8c33ff1245318436ef4c5724e480ff9dc580fd5caca1dd4d0525ec5f5a3af753</citedby><cites>FETCH-LOGICAL-c372t-b8c33ff1245318436ef4c5724e480ff9dc580fd5caca1dd4d0525ec5f5a3af753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509318302351$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tong, X.</creatorcontrib><creatorcontrib>Wang, G.</creatorcontrib><creatorcontrib>Bednarčík, J.</creatorcontrib><creatorcontrib>Jia, Y.D.</creatorcontrib><creatorcontrib>Hussain, I.</creatorcontrib><creatorcontrib>Yi, J.</creatorcontrib><creatorcontrib>Stachurski, Z.H.</creatorcontrib><creatorcontrib>Zhai, Q.J.</creatorcontrib><title>Structural evolution in a metallic glass pillar upon compression</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The in-situ observation of structural evolution of a metallic glass pillar during deformation is carried out in a high energy synchrotron X-ray source. The changes of the first maximum in structure factor, S(q), reveal the evolution of atomic structure upon stress. The width of the first maximum in S(q) increases as stress increasing during elastic deformation. After the elastic deformation, the serrated flow occurs, in which the width of the first maximum of S(q) in the loading stage of the serration event also increases. The broadening of the first maximum in S(q) means that the stress induces disordering of the glassy phase, which is because the densely packed clusters is separated into many loosely packed ones. This creates the excess free volumes.</description><subject>Amorphous materials</subject><subject>Atomic structure</subject><subject>Deformation</subject><subject>Elastic deformation</subject><subject>Evolution</subject><subject>Glass</subject><subject>Glass substrates</subject><subject>High-energy X-ray diffraction</subject><subject>Metallic glass</subject><subject>Metallic glasses</subject><subject>Microindentation of pillar</subject><subject>Microstructure</subject><subject>Serration events</subject><subject>Stresses</subject><subject>Structural evolution</subject><subject>Structure factor</subject><subject>Synchrotron radiation</subject><subject>X ray sources</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuC69aTWy_gQhkcFQZcqOsQ0xNJSS8m7YBvb4Zx7epf_Jdz-Ai5plBQoOVtV_QRdcGA1gWwAiSckBWtK56LhpenZAUNo7mEhp-Tixg7AKAC5Ircv81hMfMStM9wP_plduOQuSHTWY-z9t6Z7MvrGLPJea9DtkzJN2M_BYwxZS_JmdU-4tWfrsnH9vF985zvXp9eNg-73PCKzflnbTi3ljIhOa0FL9EKIysmUNRgbdMambSVRhtN21a0IJlEI63UXNtK8jW5Oe5OYfxeMM6qG5cwpJOKQdkAE5Bm14QdUyaMMQa0agqu1-FHUVAHUqpTB1LqQEoBU4lUKt0dS5j-3zsMKhqHg8HWBTSzakf3X_0XQgxyPQ</recordid><startdate>20180404</startdate><enddate>20180404</enddate><creator>Tong, X.</creator><creator>Wang, G.</creator><creator>Bednarčík, J.</creator><creator>Jia, Y.D.</creator><creator>Hussain, I.</creator><creator>Yi, J.</creator><creator>Stachurski, Z.H.</creator><creator>Zhai, Q.J.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180404</creationdate><title>Structural evolution in a metallic glass pillar upon compression</title><author>Tong, X. ; Wang, G. ; Bednarčík, J. ; Jia, Y.D. ; Hussain, I. ; Yi, J. ; Stachurski, Z.H. ; Zhai, Q.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-b8c33ff1245318436ef4c5724e480ff9dc580fd5caca1dd4d0525ec5f5a3af753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amorphous materials</topic><topic>Atomic structure</topic><topic>Deformation</topic><topic>Elastic deformation</topic><topic>Evolution</topic><topic>Glass</topic><topic>Glass substrates</topic><topic>High-energy X-ray diffraction</topic><topic>Metallic glass</topic><topic>Metallic glasses</topic><topic>Microindentation of pillar</topic><topic>Microstructure</topic><topic>Serration events</topic><topic>Stresses</topic><topic>Structural evolution</topic><topic>Structure factor</topic><topic>Synchrotron radiation</topic><topic>X ray sources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, X.</creatorcontrib><creatorcontrib>Wang, G.</creatorcontrib><creatorcontrib>Bednarčík, J.</creatorcontrib><creatorcontrib>Jia, Y.D.</creatorcontrib><creatorcontrib>Hussain, I.</creatorcontrib><creatorcontrib>Yi, J.</creatorcontrib><creatorcontrib>Stachurski, Z.H.</creatorcontrib><creatorcontrib>Zhai, Q.J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, X.</au><au>Wang, G.</au><au>Bednarčík, J.</au><au>Jia, Y.D.</au><au>Hussain, I.</au><au>Yi, J.</au><au>Stachurski, Z.H.</au><au>Zhai, Q.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural evolution in a metallic glass pillar upon compression</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2018-04-04</date><risdate>2018</risdate><volume>721</volume><spage>8</spage><epage>13</epage><pages>8-13</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The in-situ observation of structural evolution of a metallic glass pillar during deformation is carried out in a high energy synchrotron X-ray source. The changes of the first maximum in structure factor, S(q), reveal the evolution of atomic structure upon stress. The width of the first maximum in S(q) increases as stress increasing during elastic deformation. After the elastic deformation, the serrated flow occurs, in which the width of the first maximum of S(q) in the loading stage of the serration event also increases. The broadening of the first maximum in S(q) means that the stress induces disordering of the glassy phase, which is because the densely packed clusters is separated into many loosely packed ones. This creates the excess free volumes.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2018.02.050</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-04, Vol.721, p.8-13
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2069024084
source Elsevier ScienceDirect Journals
subjects Amorphous materials
Atomic structure
Deformation
Elastic deformation
Evolution
Glass
Glass substrates
High-energy X-ray diffraction
Metallic glass
Metallic glasses
Microindentation of pillar
Microstructure
Serration events
Stresses
Structural evolution
Structure factor
Synchrotron radiation
X ray sources
title Structural evolution in a metallic glass pillar upon compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A20%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20evolution%20in%20a%20metallic%20glass%20pillar%20upon%20compression&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Tong,%20X.&rft.date=2018-04-04&rft.volume=721&rft.spage=8&rft.epage=13&rft.pages=8-13&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2018.02.050&rft_dat=%3Cproquest_cross%3E2069024084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069024084&rft_id=info:pmid/&rft_els_id=S0921509318302351&rfr_iscdi=true