Structural evolution in a metallic glass pillar upon compression
The in-situ observation of structural evolution of a metallic glass pillar during deformation is carried out in a high energy synchrotron X-ray source. The changes of the first maximum in structure factor, S(q), reveal the evolution of atomic structure upon stress. The width of the first maximum in...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-04, Vol.721, p.8-13 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 8 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 721 |
creator | Tong, X. Wang, G. Bednarčík, J. Jia, Y.D. Hussain, I. Yi, J. Stachurski, Z.H. Zhai, Q.J. |
description | The in-situ observation of structural evolution of a metallic glass pillar during deformation is carried out in a high energy synchrotron X-ray source. The changes of the first maximum in structure factor, S(q), reveal the evolution of atomic structure upon stress. The width of the first maximum in S(q) increases as stress increasing during elastic deformation. After the elastic deformation, the serrated flow occurs, in which the width of the first maximum of S(q) in the loading stage of the serration event also increases. The broadening of the first maximum in S(q) means that the stress induces disordering of the glassy phase, which is because the densely packed clusters is separated into many loosely packed ones. This creates the excess free volumes. |
doi_str_mv | 10.1016/j.msea.2018.02.050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2069024084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509318302351</els_id><sourcerecordid>2069024084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-b8c33ff1245318436ef4c5724e480ff9dc580fd5caca1dd4d0525ec5f5a3af753</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuC69aTWy_gQhkcFQZcqOsQ0xNJSS8m7YBvb4Zx7epf_Jdz-Ai5plBQoOVtV_QRdcGA1gWwAiSckBWtK56LhpenZAUNo7mEhp-Tixg7AKAC5Ircv81hMfMStM9wP_plduOQuSHTWY-z9t6Z7MvrGLPJea9DtkzJN2M_BYwxZS_JmdU-4tWfrsnH9vF985zvXp9eNg-73PCKzflnbTi3ljIhOa0FL9EKIysmUNRgbdMambSVRhtN21a0IJlEI63UXNtK8jW5Oe5OYfxeMM6qG5cwpJOKQdkAE5Bm14QdUyaMMQa0agqu1-FHUVAHUqpTB1LqQEoBU4lUKt0dS5j-3zsMKhqHg8HWBTSzakf3X_0XQgxyPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069024084</pqid></control><display><type>article</type><title>Structural evolution in a metallic glass pillar upon compression</title><source>Elsevier ScienceDirect Journals</source><creator>Tong, X. ; Wang, G. ; Bednarčík, J. ; Jia, Y.D. ; Hussain, I. ; Yi, J. ; Stachurski, Z.H. ; Zhai, Q.J.</creator><creatorcontrib>Tong, X. ; Wang, G. ; Bednarčík, J. ; Jia, Y.D. ; Hussain, I. ; Yi, J. ; Stachurski, Z.H. ; Zhai, Q.J.</creatorcontrib><description>The in-situ observation of structural evolution of a metallic glass pillar during deformation is carried out in a high energy synchrotron X-ray source. The changes of the first maximum in structure factor, S(q), reveal the evolution of atomic structure upon stress. The width of the first maximum in S(q) increases as stress increasing during elastic deformation. After the elastic deformation, the serrated flow occurs, in which the width of the first maximum of S(q) in the loading stage of the serration event also increases. The broadening of the first maximum in S(q) means that the stress induces disordering of the glassy phase, which is because the densely packed clusters is separated into many loosely packed ones. This creates the excess free volumes.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2018.02.050</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Amorphous materials ; Atomic structure ; Deformation ; Elastic deformation ; Evolution ; Glass ; Glass substrates ; High-energy X-ray diffraction ; Metallic glass ; Metallic glasses ; Microindentation of pillar ; Microstructure ; Serration events ; Stresses ; Structural evolution ; Structure factor ; Synchrotron radiation ; X ray sources</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-04, Vol.721, p.8-13</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 4, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-b8c33ff1245318436ef4c5724e480ff9dc580fd5caca1dd4d0525ec5f5a3af753</citedby><cites>FETCH-LOGICAL-c372t-b8c33ff1245318436ef4c5724e480ff9dc580fd5caca1dd4d0525ec5f5a3af753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509318302351$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tong, X.</creatorcontrib><creatorcontrib>Wang, G.</creatorcontrib><creatorcontrib>Bednarčík, J.</creatorcontrib><creatorcontrib>Jia, Y.D.</creatorcontrib><creatorcontrib>Hussain, I.</creatorcontrib><creatorcontrib>Yi, J.</creatorcontrib><creatorcontrib>Stachurski, Z.H.</creatorcontrib><creatorcontrib>Zhai, Q.J.</creatorcontrib><title>Structural evolution in a metallic glass pillar upon compression</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>The in-situ observation of structural evolution of a metallic glass pillar during deformation is carried out in a high energy synchrotron X-ray source. The changes of the first maximum in structure factor, S(q), reveal the evolution of atomic structure upon stress. The width of the first maximum in S(q) increases as stress increasing during elastic deformation. After the elastic deformation, the serrated flow occurs, in which the width of the first maximum of S(q) in the loading stage of the serration event also increases. The broadening of the first maximum in S(q) means that the stress induces disordering of the glassy phase, which is because the densely packed clusters is separated into many loosely packed ones. This creates the excess free volumes.</description><subject>Amorphous materials</subject><subject>Atomic structure</subject><subject>Deformation</subject><subject>Elastic deformation</subject><subject>Evolution</subject><subject>Glass</subject><subject>Glass substrates</subject><subject>High-energy X-ray diffraction</subject><subject>Metallic glass</subject><subject>Metallic glasses</subject><subject>Microindentation of pillar</subject><subject>Microstructure</subject><subject>Serration events</subject><subject>Stresses</subject><subject>Structural evolution</subject><subject>Structure factor</subject><subject>Synchrotron radiation</subject><subject>X ray sources</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuC69aTWy_gQhkcFQZcqOsQ0xNJSS8m7YBvb4Zx7epf_Jdz-Ai5plBQoOVtV_QRdcGA1gWwAiSckBWtK56LhpenZAUNo7mEhp-Tixg7AKAC5Ircv81hMfMStM9wP_plduOQuSHTWY-z9t6Z7MvrGLPJea9DtkzJN2M_BYwxZS_JmdU-4tWfrsnH9vF985zvXp9eNg-73PCKzflnbTi3ljIhOa0FL9EKIysmUNRgbdMambSVRhtN21a0IJlEI63UXNtK8jW5Oe5OYfxeMM6qG5cwpJOKQdkAE5Bm14QdUyaMMQa0agqu1-FHUVAHUqpTB1LqQEoBU4lUKt0dS5j-3zsMKhqHg8HWBTSzakf3X_0XQgxyPQ</recordid><startdate>20180404</startdate><enddate>20180404</enddate><creator>Tong, X.</creator><creator>Wang, G.</creator><creator>Bednarčík, J.</creator><creator>Jia, Y.D.</creator><creator>Hussain, I.</creator><creator>Yi, J.</creator><creator>Stachurski, Z.H.</creator><creator>Zhai, Q.J.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180404</creationdate><title>Structural evolution in a metallic glass pillar upon compression</title><author>Tong, X. ; Wang, G. ; Bednarčík, J. ; Jia, Y.D. ; Hussain, I. ; Yi, J. ; Stachurski, Z.H. ; Zhai, Q.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-b8c33ff1245318436ef4c5724e480ff9dc580fd5caca1dd4d0525ec5f5a3af753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amorphous materials</topic><topic>Atomic structure</topic><topic>Deformation</topic><topic>Elastic deformation</topic><topic>Evolution</topic><topic>Glass</topic><topic>Glass substrates</topic><topic>High-energy X-ray diffraction</topic><topic>Metallic glass</topic><topic>Metallic glasses</topic><topic>Microindentation of pillar</topic><topic>Microstructure</topic><topic>Serration events</topic><topic>Stresses</topic><topic>Structural evolution</topic><topic>Structure factor</topic><topic>Synchrotron radiation</topic><topic>X ray sources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, X.</creatorcontrib><creatorcontrib>Wang, G.</creatorcontrib><creatorcontrib>Bednarčík, J.</creatorcontrib><creatorcontrib>Jia, Y.D.</creatorcontrib><creatorcontrib>Hussain, I.</creatorcontrib><creatorcontrib>Yi, J.</creatorcontrib><creatorcontrib>Stachurski, Z.H.</creatorcontrib><creatorcontrib>Zhai, Q.J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, X.</au><au>Wang, G.</au><au>Bednarčík, J.</au><au>Jia, Y.D.</au><au>Hussain, I.</au><au>Yi, J.</au><au>Stachurski, Z.H.</au><au>Zhai, Q.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural evolution in a metallic glass pillar upon compression</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2018-04-04</date><risdate>2018</risdate><volume>721</volume><spage>8</spage><epage>13</epage><pages>8-13</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The in-situ observation of structural evolution of a metallic glass pillar during deformation is carried out in a high energy synchrotron X-ray source. The changes of the first maximum in structure factor, S(q), reveal the evolution of atomic structure upon stress. The width of the first maximum in S(q) increases as stress increasing during elastic deformation. After the elastic deformation, the serrated flow occurs, in which the width of the first maximum of S(q) in the loading stage of the serration event also increases. The broadening of the first maximum in S(q) means that the stress induces disordering of the glassy phase, which is because the densely packed clusters is separated into many loosely packed ones. This creates the excess free volumes.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2018.02.050</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-04, Vol.721, p.8-13 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2069024084 |
source | Elsevier ScienceDirect Journals |
subjects | Amorphous materials Atomic structure Deformation Elastic deformation Evolution Glass Glass substrates High-energy X-ray diffraction Metallic glass Metallic glasses Microindentation of pillar Microstructure Serration events Stresses Structural evolution Structure factor Synchrotron radiation X ray sources |
title | Structural evolution in a metallic glass pillar upon compression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A20%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20evolution%20in%20a%20metallic%20glass%20pillar%20upon%20compression&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Tong,%20X.&rft.date=2018-04-04&rft.volume=721&rft.spage=8&rft.epage=13&rft.pages=8-13&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2018.02.050&rft_dat=%3Cproquest_cross%3E2069024084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069024084&rft_id=info:pmid/&rft_els_id=S0921509318302351&rfr_iscdi=true |