Nanoscale Zr-containing precipitates; a solution for significant improvement of high-temperature strength in Al-Si-Cu-Mg alloys

This work aims to reveal the valuable role of Zr in cast Al-Si-Cu-Mg alloys utilised at elevated temperatures. The Al7Si2Cu0.2Zr alloy, subjected to well-tuned heat treatment process, was benchmarked against the conventional Al7Si0.5Cu alloy. Microstructural investigation showed that the main streng...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2018-04, Vol.721, p.328-338
Hauptverfasser: Rahimian, Mehdi, Amirkhanlou, Sajjad, Blake, Paul, Ji, Shouxun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 338
container_issue
container_start_page 328
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 721
creator Rahimian, Mehdi
Amirkhanlou, Sajjad
Blake, Paul
Ji, Shouxun
description This work aims to reveal the valuable role of Zr in cast Al-Si-Cu-Mg alloys utilised at elevated temperatures. The Al7Si2Cu0.2Zr alloy, subjected to well-tuned heat treatment process, was benchmarked against the conventional Al7Si0.5Cu alloy. Microstructural investigation showed that the main strengthening phases in the Al7Si2Cu0.2Zr alloy are θ', Q' and Al-Si-Zr-Ti precipitates. Al-Si-Zr-Ti precipitates with the size of 80-200 nm are formed during solutionising at 530 °C, which can be considered as the first ageing step. Other two Cu-containing precipitates (θ' and Q') at the size of 20 nm are formed during ageing (170 °C). Nano-sized Zr-containing precipitates are mostly exhibited elliptical morphology with coherent/semi-coherent interfaces with the α-Al matrix, making them more stable at elevated temperatures. As a result, the yield strength is improved at room temperature from 261 to 291 MPa, and the ultimate tensile strength (UTS) is improved from 282 to 335 MPa for the Al7Si2Cu0.2Zr alloy, compared with the Al7Si0.5Cu alloy. Moreover, the mechanical properties are significantly improved at elevated temperatures. The yield strength and UTS at 200 °C are 177 and 186 MPa, respectively, for the Al7Si0.5Cu alloy. But these are 224 and 246 MPa, respectively, for the Al7Si2Cu0.2Zr alloy. The improvement of mechanical properties at elevated temperatures is mainly attributed to the refined microstructure and the precipitation of strengthening phases containing slow-diffused Zr element to retard the precipitation coarsening. Furthermore, the addition of Cu changes the precipitates from θ' and β'' in the Al7Si0.5Cu alloy to θ' and Q' in the Al7Si2Cu0.2Zr alloy which, in turn, induce a complementary effect on the improvement of mechanical properties.
doi_str_mv 10.1016/j.msea.2018.02.060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2069023851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509318302685</els_id><sourcerecordid>2069023851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-4bcbd855ec72f3a6edad3d4f5717b558673d28fceb8e7cce1268d69721180b33</originalsourceid><addsrcrecordid>eNp9kLtu3DAQRYkgAbJx_AOpCKSmzIceFJLGWMSOAdsp4ioNQVEj7SwkUiEpA67y69ZiU7uaKe6ZuTiEfBG8EFzUV8diTmALyYUuuCx4zd-RndCNYmWr6vdkx1spWMVb9ZF8SunIORclr3bk36P1ITk7Af0TmQs-W_ToR7pEcLhgthnSN2ppCtOaMXg6hEgTjh4HdNZnivMSwzPMsO1hoAccDyzDvEC0eY1AU47gx3yg6On1xH4j26_sYaR2msJL-kw-DHZKcPl_XpCnmx9P-5_s_tft3f76nrlS6czKznW9ripwjRyUraG3verLoWpE01WVrhvVSz046DQ0zoGQte7rtpFCaN4pdUG-ns9uXf-ukLI5hjX67aORvG65VLoSW0qeUy6GlCIMZok42_hiBDcnz-ZoTp7NybPh0myeN-j7GYKt_jNCNMkheAc9bgqz6QO-hb8CZFSJCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069023851</pqid></control><display><type>article</type><title>Nanoscale Zr-containing precipitates; a solution for significant improvement of high-temperature strength in Al-Si-Cu-Mg alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Rahimian, Mehdi ; Amirkhanlou, Sajjad ; Blake, Paul ; Ji, Shouxun</creator><creatorcontrib>Rahimian, Mehdi ; Amirkhanlou, Sajjad ; Blake, Paul ; Ji, Shouxun</creatorcontrib><description>This work aims to reveal the valuable role of Zr in cast Al-Si-Cu-Mg alloys utilised at elevated temperatures. The Al7Si2Cu0.2Zr alloy, subjected to well-tuned heat treatment process, was benchmarked against the conventional Al7Si0.5Cu alloy. Microstructural investigation showed that the main strengthening phases in the Al7Si2Cu0.2Zr alloy are θ', Q' and Al-Si-Zr-Ti precipitates. Al-Si-Zr-Ti precipitates with the size of 80-200 nm are formed during solutionising at 530 °C, which can be considered as the first ageing step. Other two Cu-containing precipitates (θ' and Q') at the size of 20 nm are formed during ageing (170 °C). Nano-sized Zr-containing precipitates are mostly exhibited elliptical morphology with coherent/semi-coherent interfaces with the α-Al matrix, making them more stable at elevated temperatures. As a result, the yield strength is improved at room temperature from 261 to 291 MPa, and the ultimate tensile strength (UTS) is improved from 282 to 335 MPa for the Al7Si2Cu0.2Zr alloy, compared with the Al7Si0.5Cu alloy. Moreover, the mechanical properties are significantly improved at elevated temperatures. The yield strength and UTS at 200 °C are 177 and 186 MPa, respectively, for the Al7Si0.5Cu alloy. But these are 224 and 246 MPa, respectively, for the Al7Si2Cu0.2Zr alloy. The improvement of mechanical properties at elevated temperatures is mainly attributed to the refined microstructure and the precipitation of strengthening phases containing slow-diffused Zr element to retard the precipitation coarsening. Furthermore, the addition of Cu changes the precipitates from θ' and β'' in the Al7Si0.5Cu alloy to θ' and Q' in the Al7Si2Cu0.2Zr alloy which, in turn, induce a complementary effect on the improvement of mechanical properties.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2018.02.060</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aluminium alloys ; Aluminum alloys ; Aluminum base alloys ; Chemical precipitation ; Coarsening ; Copper ; Copper base alloys ; Diffusion rate ; Heat treating ; Heat treatment ; High temperature ; Mechanical properties ; Microstructure ; Morphology ; Phase transition ; Phase transitions ; Precipitates ; Precipitation hardening ; Precipitation strengthening ; Silicon ; Solution strengthening ; Titanium ; Ultimate tensile strength ; Yield strength ; Zirconium</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2018-04, Vol.721, p.328-338</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 4, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-4bcbd855ec72f3a6edad3d4f5717b558673d28fceb8e7cce1268d69721180b33</citedby><cites>FETCH-LOGICAL-c438t-4bcbd855ec72f3a6edad3d4f5717b558673d28fceb8e7cce1268d69721180b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0921509318302685$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Rahimian, Mehdi</creatorcontrib><creatorcontrib>Amirkhanlou, Sajjad</creatorcontrib><creatorcontrib>Blake, Paul</creatorcontrib><creatorcontrib>Ji, Shouxun</creatorcontrib><title>Nanoscale Zr-containing precipitates; a solution for significant improvement of high-temperature strength in Al-Si-Cu-Mg alloys</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>This work aims to reveal the valuable role of Zr in cast Al-Si-Cu-Mg alloys utilised at elevated temperatures. The Al7Si2Cu0.2Zr alloy, subjected to well-tuned heat treatment process, was benchmarked against the conventional Al7Si0.5Cu alloy. Microstructural investigation showed that the main strengthening phases in the Al7Si2Cu0.2Zr alloy are θ', Q' and Al-Si-Zr-Ti precipitates. Al-Si-Zr-Ti precipitates with the size of 80-200 nm are formed during solutionising at 530 °C, which can be considered as the first ageing step. Other two Cu-containing precipitates (θ' and Q') at the size of 20 nm are formed during ageing (170 °C). Nano-sized Zr-containing precipitates are mostly exhibited elliptical morphology with coherent/semi-coherent interfaces with the α-Al matrix, making them more stable at elevated temperatures. As a result, the yield strength is improved at room temperature from 261 to 291 MPa, and the ultimate tensile strength (UTS) is improved from 282 to 335 MPa for the Al7Si2Cu0.2Zr alloy, compared with the Al7Si0.5Cu alloy. Moreover, the mechanical properties are significantly improved at elevated temperatures. The yield strength and UTS at 200 °C are 177 and 186 MPa, respectively, for the Al7Si0.5Cu alloy. But these are 224 and 246 MPa, respectively, for the Al7Si2Cu0.2Zr alloy. The improvement of mechanical properties at elevated temperatures is mainly attributed to the refined microstructure and the precipitation of strengthening phases containing slow-diffused Zr element to retard the precipitation coarsening. Furthermore, the addition of Cu changes the precipitates from θ' and β'' in the Al7Si0.5Cu alloy to θ' and Q' in the Al7Si2Cu0.2Zr alloy which, in turn, induce a complementary effect on the improvement of mechanical properties.</description><subject>Aluminium alloys</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Chemical precipitation</subject><subject>Coarsening</subject><subject>Copper</subject><subject>Copper base alloys</subject><subject>Diffusion rate</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>High temperature</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Phase transition</subject><subject>Phase transitions</subject><subject>Precipitates</subject><subject>Precipitation hardening</subject><subject>Precipitation strengthening</subject><subject>Silicon</subject><subject>Solution strengthening</subject><subject>Titanium</subject><subject>Ultimate tensile strength</subject><subject>Yield strength</subject><subject>Zirconium</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kLtu3DAQRYkgAbJx_AOpCKSmzIceFJLGWMSOAdsp4ioNQVEj7SwkUiEpA67y69ZiU7uaKe6ZuTiEfBG8EFzUV8diTmALyYUuuCx4zd-RndCNYmWr6vdkx1spWMVb9ZF8SunIORclr3bk36P1ITk7Af0TmQs-W_ToR7pEcLhgthnSN2ppCtOaMXg6hEgTjh4HdNZnivMSwzPMsO1hoAccDyzDvEC0eY1AU47gx3yg6On1xH4j26_sYaR2msJL-kw-DHZKcPl_XpCnmx9P-5_s_tft3f76nrlS6czKznW9ripwjRyUraG3verLoWpE01WVrhvVSz046DQ0zoGQte7rtpFCaN4pdUG-ns9uXf-ukLI5hjX67aORvG65VLoSW0qeUy6GlCIMZok42_hiBDcnz-ZoTp7NybPh0myeN-j7GYKt_jNCNMkheAc9bgqz6QO-hb8CZFSJCw</recordid><startdate>20180404</startdate><enddate>20180404</enddate><creator>Rahimian, Mehdi</creator><creator>Amirkhanlou, Sajjad</creator><creator>Blake, Paul</creator><creator>Ji, Shouxun</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180404</creationdate><title>Nanoscale Zr-containing precipitates; a solution for significant improvement of high-temperature strength in Al-Si-Cu-Mg alloys</title><author>Rahimian, Mehdi ; Amirkhanlou, Sajjad ; Blake, Paul ; Ji, Shouxun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-4bcbd855ec72f3a6edad3d4f5717b558673d28fceb8e7cce1268d69721180b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminium alloys</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Chemical precipitation</topic><topic>Coarsening</topic><topic>Copper</topic><topic>Copper base alloys</topic><topic>Diffusion rate</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>High temperature</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Phase transition</topic><topic>Phase transitions</topic><topic>Precipitates</topic><topic>Precipitation hardening</topic><topic>Precipitation strengthening</topic><topic>Silicon</topic><topic>Solution strengthening</topic><topic>Titanium</topic><topic>Ultimate tensile strength</topic><topic>Yield strength</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahimian, Mehdi</creatorcontrib><creatorcontrib>Amirkhanlou, Sajjad</creatorcontrib><creatorcontrib>Blake, Paul</creatorcontrib><creatorcontrib>Ji, Shouxun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahimian, Mehdi</au><au>Amirkhanlou, Sajjad</au><au>Blake, Paul</au><au>Ji, Shouxun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Zr-containing precipitates; a solution for significant improvement of high-temperature strength in Al-Si-Cu-Mg alloys</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2018-04-04</date><risdate>2018</risdate><volume>721</volume><spage>328</spage><epage>338</epage><pages>328-338</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>This work aims to reveal the valuable role of Zr in cast Al-Si-Cu-Mg alloys utilised at elevated temperatures. The Al7Si2Cu0.2Zr alloy, subjected to well-tuned heat treatment process, was benchmarked against the conventional Al7Si0.5Cu alloy. Microstructural investigation showed that the main strengthening phases in the Al7Si2Cu0.2Zr alloy are θ', Q' and Al-Si-Zr-Ti precipitates. Al-Si-Zr-Ti precipitates with the size of 80-200 nm are formed during solutionising at 530 °C, which can be considered as the first ageing step. Other two Cu-containing precipitates (θ' and Q') at the size of 20 nm are formed during ageing (170 °C). Nano-sized Zr-containing precipitates are mostly exhibited elliptical morphology with coherent/semi-coherent interfaces with the α-Al matrix, making them more stable at elevated temperatures. As a result, the yield strength is improved at room temperature from 261 to 291 MPa, and the ultimate tensile strength (UTS) is improved from 282 to 335 MPa for the Al7Si2Cu0.2Zr alloy, compared with the Al7Si0.5Cu alloy. Moreover, the mechanical properties are significantly improved at elevated temperatures. The yield strength and UTS at 200 °C are 177 and 186 MPa, respectively, for the Al7Si0.5Cu alloy. But these are 224 and 246 MPa, respectively, for the Al7Si2Cu0.2Zr alloy. The improvement of mechanical properties at elevated temperatures is mainly attributed to the refined microstructure and the precipitation of strengthening phases containing slow-diffused Zr element to retard the precipitation coarsening. Furthermore, the addition of Cu changes the precipitates from θ' and β'' in the Al7Si0.5Cu alloy to θ' and Q' in the Al7Si2Cu0.2Zr alloy which, in turn, induce a complementary effect on the improvement of mechanical properties.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2018.02.060</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2018-04, Vol.721, p.328-338
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2069023851
source Elsevier ScienceDirect Journals
subjects Aluminium alloys
Aluminum alloys
Aluminum base alloys
Chemical precipitation
Coarsening
Copper
Copper base alloys
Diffusion rate
Heat treating
Heat treatment
High temperature
Mechanical properties
Microstructure
Morphology
Phase transition
Phase transitions
Precipitates
Precipitation hardening
Precipitation strengthening
Silicon
Solution strengthening
Titanium
Ultimate tensile strength
Yield strength
Zirconium
title Nanoscale Zr-containing precipitates; a solution for significant improvement of high-temperature strength in Al-Si-Cu-Mg alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Zr-containing%20precipitates;%20a%20solution%20for%20significant%20improvement%20of%20high-temperature%20strength%20in%20Al-Si-Cu-Mg%20alloys&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Rahimian,%20Mehdi&rft.date=2018-04-04&rft.volume=721&rft.spage=328&rft.epage=338&rft.pages=328-338&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2018.02.060&rft_dat=%3Cproquest_cross%3E2069023851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069023851&rft_id=info:pmid/&rft_els_id=S0921509318302685&rfr_iscdi=true