Adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control for power conditioning applications
This paper develops an adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control (TVSMC) for the application of power conditioning systems. The presented methodology combines the merits of TVSMC, grey prediction (GP), and adaptive neuro-fuzzy inference system (ANFIS). Compar...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2018-08, Vol.30 (3), p.699-707 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 707 |
---|---|
container_issue | 3 |
container_start_page | 699 |
container_title | Neural computing & applications |
container_volume | 30 |
creator | Chang, En-Chih Wu, Rong-Ching ZHU, Ke Chen, Guan-Yu |
description | This paper develops an adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control (TVSMC) for the application of power conditioning systems. The presented methodology combines the merits of TVSMC, grey prediction (GP), and adaptive neuro-fuzzy inference system (ANFIS). Compared with classic sliding mode control, the TVSMC accelerates reaching phase and guarantees the sliding mode existence starting at arbitrary primary circumstance. But, as a highly nonlinear loading occurs, the TVSMC will undergo chattering and steady-state errors, thus degrading PCS’s performance. The GP is therefore used to attenuate the chattering if the overestimate of system uncertainty bounds exists and to lessen steady-state errors if the underestimate of system uncertainty bounds happens. Also, the GP-compensated TVSMC control gains are optimally tuned by the ANFIS for achieving more precise tracking. Using the proposed methodology, the power conditioning system (PCS) robustness is increased expectably, and low distorted output voltage and fast transient response at PCS output can be achieved even under nonlinear loading. The analysis in theory, design process, simulations, and digital signal processing-based experimental realization for PCS are represented to support the efficacy of the proposed methodology. Because the proposed methodology is easier to implement than prior methodologies and provides high tracking accuracy and low computational complexity, the contents of this paper will be of interest to learners of correlated artificial intelligence applications. |
doi_str_mv | 10.1007/s00521-016-2515-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2068968724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2068968724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2efc6a9b1794e5a065fd5a443f08b4705e21f4fee864206b673f73fe6004131c3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9Gk-Wh7XBa_QPCi55C2kyVL29SkXen-elNW8CQMDDPzvDPMi9Ato_eM0vwhUiozRihTJJNMEnaGVkxwTjiVxTla0VKkqRL8El3FuKeUClXIFTpsGjOM7gC4hyl4YqfjccautxCgrwHHOY7QkcpEaPAuwIxH1wE5mDC7fodj65old74BXPt-DL7F1gc8-G8IS6dxo_P9wphhaF1tljJeowtr2gg3v3mNPp8eP7Yv5O39-XW7eSM1Z2okGdhambJieSlAGqqkbaQRgltaVCKnEjJmhQUolMioqlTObQpQ6T3GWc3X6O60dwj-a4I46r2fQp9O6sQXpSryTCSKnag6-BgDWD0E16UXNaN6sVef7NXJXr3Yq1nSZCdNTGy_g_C3-X_RDzpXf2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068968724</pqid></control><display><type>article</type><title>Adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control for power conditioning applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chang, En-Chih ; Wu, Rong-Ching ; ZHU, Ke ; Chen, Guan-Yu</creator><creatorcontrib>Chang, En-Chih ; Wu, Rong-Ching ; ZHU, Ke ; Chen, Guan-Yu</creatorcontrib><description>This paper develops an adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control (TVSMC) for the application of power conditioning systems. The presented methodology combines the merits of TVSMC, grey prediction (GP), and adaptive neuro-fuzzy inference system (ANFIS). Compared with classic sliding mode control, the TVSMC accelerates reaching phase and guarantees the sliding mode existence starting at arbitrary primary circumstance. But, as a highly nonlinear loading occurs, the TVSMC will undergo chattering and steady-state errors, thus degrading PCS’s performance. The GP is therefore used to attenuate the chattering if the overestimate of system uncertainty bounds exists and to lessen steady-state errors if the underestimate of system uncertainty bounds happens. Also, the GP-compensated TVSMC control gains are optimally tuned by the ANFIS for achieving more precise tracking. Using the proposed methodology, the power conditioning system (PCS) robustness is increased expectably, and low distorted output voltage and fast transient response at PCS output can be achieved even under nonlinear loading. The analysis in theory, design process, simulations, and digital signal processing-based experimental realization for PCS are represented to support the efficacy of the proposed methodology. Because the proposed methodology is easier to implement than prior methodologies and provides high tracking accuracy and low computational complexity, the contents of this paper will be of interest to learners of correlated artificial intelligence applications.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-016-2515-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Adaptive control ; Artificial Intelligence ; Artificial neural networks ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Computer simulation ; Data Mining and Knowledge Discovery ; Digital signal processing ; Fuzzy logic ; Fuzzy systems ; Grey prediction ; Image Processing and Computer Vision ; Inference ; Iscmi15 ; Methodology ; Nonlinear analysis ; Power conditioning ; Probability and Statistics in Computer Science ; Sliding mode control ; Steady state ; Tracking ; Uncertainty</subject><ispartof>Neural computing & applications, 2018-08, Vol.30 (3), p.699-707</ispartof><rights>The Natural Computing Applications Forum 2016</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2efc6a9b1794e5a065fd5a443f08b4705e21f4fee864206b673f73fe6004131c3</citedby><cites>FETCH-LOGICAL-c316t-2efc6a9b1794e5a065fd5a443f08b4705e21f4fee864206b673f73fe6004131c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-016-2515-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-016-2515-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Chang, En-Chih</creatorcontrib><creatorcontrib>Wu, Rong-Ching</creatorcontrib><creatorcontrib>ZHU, Ke</creatorcontrib><creatorcontrib>Chen, Guan-Yu</creatorcontrib><title>Adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control for power conditioning applications</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>This paper develops an adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control (TVSMC) for the application of power conditioning systems. The presented methodology combines the merits of TVSMC, grey prediction (GP), and adaptive neuro-fuzzy inference system (ANFIS). Compared with classic sliding mode control, the TVSMC accelerates reaching phase and guarantees the sliding mode existence starting at arbitrary primary circumstance. But, as a highly nonlinear loading occurs, the TVSMC will undergo chattering and steady-state errors, thus degrading PCS’s performance. The GP is therefore used to attenuate the chattering if the overestimate of system uncertainty bounds exists and to lessen steady-state errors if the underestimate of system uncertainty bounds happens. Also, the GP-compensated TVSMC control gains are optimally tuned by the ANFIS for achieving more precise tracking. Using the proposed methodology, the power conditioning system (PCS) robustness is increased expectably, and low distorted output voltage and fast transient response at PCS output can be achieved even under nonlinear loading. The analysis in theory, design process, simulations, and digital signal processing-based experimental realization for PCS are represented to support the efficacy of the proposed methodology. Because the proposed methodology is easier to implement than prior methodologies and provides high tracking accuracy and low computational complexity, the contents of this paper will be of interest to learners of correlated artificial intelligence applications.</description><subject>Adaptive control</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Digital signal processing</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Grey prediction</subject><subject>Image Processing and Computer Vision</subject><subject>Inference</subject><subject>Iscmi15</subject><subject>Methodology</subject><subject>Nonlinear analysis</subject><subject>Power conditioning</subject><subject>Probability and Statistics in Computer Science</subject><subject>Sliding mode control</subject><subject>Steady state</subject><subject>Tracking</subject><subject>Uncertainty</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9Gk-Wh7XBa_QPCi55C2kyVL29SkXen-elNW8CQMDDPzvDPMi9Ato_eM0vwhUiozRihTJJNMEnaGVkxwTjiVxTla0VKkqRL8El3FuKeUClXIFTpsGjOM7gC4hyl4YqfjccautxCgrwHHOY7QkcpEaPAuwIxH1wE5mDC7fodj65old74BXPt-DL7F1gc8-G8IS6dxo_P9wphhaF1tljJeowtr2gg3v3mNPp8eP7Yv5O39-XW7eSM1Z2okGdhambJieSlAGqqkbaQRgltaVCKnEjJmhQUolMioqlTObQpQ6T3GWc3X6O60dwj-a4I46r2fQp9O6sQXpSryTCSKnag6-BgDWD0E16UXNaN6sVef7NXJXr3Yq1nSZCdNTGy_g_C3-X_RDzpXf2E</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Chang, En-Chih</creator><creator>Wu, Rong-Ching</creator><creator>ZHU, Ke</creator><creator>Chen, Guan-Yu</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180801</creationdate><title>Adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control for power conditioning applications</title><author>Chang, En-Chih ; Wu, Rong-Ching ; ZHU, Ke ; Chen, Guan-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2efc6a9b1794e5a065fd5a443f08b4705e21f4fee864206b673f73fe6004131c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive control</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Digital signal processing</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Grey prediction</topic><topic>Image Processing and Computer Vision</topic><topic>Inference</topic><topic>Iscmi15</topic><topic>Methodology</topic><topic>Nonlinear analysis</topic><topic>Power conditioning</topic><topic>Probability and Statistics in Computer Science</topic><topic>Sliding mode control</topic><topic>Steady state</topic><topic>Tracking</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, En-Chih</creatorcontrib><creatorcontrib>Wu, Rong-Ching</creatorcontrib><creatorcontrib>ZHU, Ke</creatorcontrib><creatorcontrib>Chen, Guan-Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, En-Chih</au><au>Wu, Rong-Ching</au><au>ZHU, Ke</au><au>Chen, Guan-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control for power conditioning applications</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>30</volume><issue>3</issue><spage>699</spage><epage>707</epage><pages>699-707</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>This paper develops an adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control (TVSMC) for the application of power conditioning systems. The presented methodology combines the merits of TVSMC, grey prediction (GP), and adaptive neuro-fuzzy inference system (ANFIS). Compared with classic sliding mode control, the TVSMC accelerates reaching phase and guarantees the sliding mode existence starting at arbitrary primary circumstance. But, as a highly nonlinear loading occurs, the TVSMC will undergo chattering and steady-state errors, thus degrading PCS’s performance. The GP is therefore used to attenuate the chattering if the overestimate of system uncertainty bounds exists and to lessen steady-state errors if the underestimate of system uncertainty bounds happens. Also, the GP-compensated TVSMC control gains are optimally tuned by the ANFIS for achieving more precise tracking. Using the proposed methodology, the power conditioning system (PCS) robustness is increased expectably, and low distorted output voltage and fast transient response at PCS output can be achieved even under nonlinear loading. The analysis in theory, design process, simulations, and digital signal processing-based experimental realization for PCS are represented to support the efficacy of the proposed methodology. Because the proposed methodology is easier to implement than prior methodologies and provides high tracking accuracy and low computational complexity, the contents of this paper will be of interest to learners of correlated artificial intelligence applications.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-016-2515-1</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2018-08, Vol.30 (3), p.699-707 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2068968724 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adaptive control Artificial Intelligence Artificial neural networks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Computer simulation Data Mining and Knowledge Discovery Digital signal processing Fuzzy logic Fuzzy systems Grey prediction Image Processing and Computer Vision Inference Iscmi15 Methodology Nonlinear analysis Power conditioning Probability and Statistics in Computer Science Sliding mode control Steady state Tracking Uncertainty |
title | Adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control for power conditioning applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A25%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20neuro-fuzzy%20inference%20system-based%20grey%20time-varying%20sliding%20mode%20control%20for%20power%20conditioning%20applications&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Chang,%20En-Chih&rft.date=2018-08-01&rft.volume=30&rft.issue=3&rft.spage=699&rft.epage=707&rft.pages=699-707&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-016-2515-1&rft_dat=%3Cproquest_cross%3E2068968724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068968724&rft_id=info:pmid/&rfr_iscdi=true |