Adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control for power conditioning applications

This paper develops an adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control (TVSMC) for the application of power conditioning systems. The presented methodology combines the merits of TVSMC, grey prediction (GP), and adaptive neuro-fuzzy inference system (ANFIS). Compar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2018-08, Vol.30 (3), p.699-707
Hauptverfasser: Chang, En-Chih, Wu, Rong-Ching, ZHU, Ke, Chen, Guan-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 707
container_issue 3
container_start_page 699
container_title Neural computing & applications
container_volume 30
creator Chang, En-Chih
Wu, Rong-Ching
ZHU, Ke
Chen, Guan-Yu
description This paper develops an adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control (TVSMC) for the application of power conditioning systems. The presented methodology combines the merits of TVSMC, grey prediction (GP), and adaptive neuro-fuzzy inference system (ANFIS). Compared with classic sliding mode control, the TVSMC accelerates reaching phase and guarantees the sliding mode existence starting at arbitrary primary circumstance. But, as a highly nonlinear loading occurs, the TVSMC will undergo chattering and steady-state errors, thus degrading PCS’s performance. The GP is therefore used to attenuate the chattering if the overestimate of system uncertainty bounds exists and to lessen steady-state errors if the underestimate of system uncertainty bounds happens. Also, the GP-compensated TVSMC control gains are optimally tuned by the ANFIS for achieving more precise tracking. Using the proposed methodology, the power conditioning system (PCS) robustness is increased expectably, and low distorted output voltage and fast transient response at PCS output can be achieved even under nonlinear loading. The analysis in theory, design process, simulations, and digital signal processing-based experimental realization for PCS are represented to support the efficacy of the proposed methodology. Because the proposed methodology is easier to implement than prior methodologies and provides high tracking accuracy and low computational complexity, the contents of this paper will be of interest to learners of correlated artificial intelligence applications.
doi_str_mv 10.1007/s00521-016-2515-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2068968724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2068968724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2efc6a9b1794e5a065fd5a443f08b4705e21f4fee864206b673f73fe6004131c3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9Gk-Wh7XBa_QPCi55C2kyVL29SkXen-elNW8CQMDDPzvDPMi9Ato_eM0vwhUiozRihTJJNMEnaGVkxwTjiVxTla0VKkqRL8El3FuKeUClXIFTpsGjOM7gC4hyl4YqfjccautxCgrwHHOY7QkcpEaPAuwIxH1wE5mDC7fodj65old74BXPt-DL7F1gc8-G8IS6dxo_P9wphhaF1tljJeowtr2gg3v3mNPp8eP7Yv5O39-XW7eSM1Z2okGdhambJieSlAGqqkbaQRgltaVCKnEjJmhQUolMioqlTObQpQ6T3GWc3X6O60dwj-a4I46r2fQp9O6sQXpSryTCSKnag6-BgDWD0E16UXNaN6sVef7NXJXr3Yq1nSZCdNTGy_g_C3-X_RDzpXf2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068968724</pqid></control><display><type>article</type><title>Adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control for power conditioning applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chang, En-Chih ; Wu, Rong-Ching ; ZHU, Ke ; Chen, Guan-Yu</creator><creatorcontrib>Chang, En-Chih ; Wu, Rong-Ching ; ZHU, Ke ; Chen, Guan-Yu</creatorcontrib><description>This paper develops an adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control (TVSMC) for the application of power conditioning systems. The presented methodology combines the merits of TVSMC, grey prediction (GP), and adaptive neuro-fuzzy inference system (ANFIS). Compared with classic sliding mode control, the TVSMC accelerates reaching phase and guarantees the sliding mode existence starting at arbitrary primary circumstance. But, as a highly nonlinear loading occurs, the TVSMC will undergo chattering and steady-state errors, thus degrading PCS’s performance. The GP is therefore used to attenuate the chattering if the overestimate of system uncertainty bounds exists and to lessen steady-state errors if the underestimate of system uncertainty bounds happens. Also, the GP-compensated TVSMC control gains are optimally tuned by the ANFIS for achieving more precise tracking. Using the proposed methodology, the power conditioning system (PCS) robustness is increased expectably, and low distorted output voltage and fast transient response at PCS output can be achieved even under nonlinear loading. The analysis in theory, design process, simulations, and digital signal processing-based experimental realization for PCS are represented to support the efficacy of the proposed methodology. Because the proposed methodology is easier to implement than prior methodologies and provides high tracking accuracy and low computational complexity, the contents of this paper will be of interest to learners of correlated artificial intelligence applications.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-016-2515-1</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Adaptive control ; Artificial Intelligence ; Artificial neural networks ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Computer simulation ; Data Mining and Knowledge Discovery ; Digital signal processing ; Fuzzy logic ; Fuzzy systems ; Grey prediction ; Image Processing and Computer Vision ; Inference ; Iscmi15 ; Methodology ; Nonlinear analysis ; Power conditioning ; Probability and Statistics in Computer Science ; Sliding mode control ; Steady state ; Tracking ; Uncertainty</subject><ispartof>Neural computing &amp; applications, 2018-08, Vol.30 (3), p.699-707</ispartof><rights>The Natural Computing Applications Forum 2016</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2efc6a9b1794e5a065fd5a443f08b4705e21f4fee864206b673f73fe6004131c3</citedby><cites>FETCH-LOGICAL-c316t-2efc6a9b1794e5a065fd5a443f08b4705e21f4fee864206b673f73fe6004131c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-016-2515-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-016-2515-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Chang, En-Chih</creatorcontrib><creatorcontrib>Wu, Rong-Ching</creatorcontrib><creatorcontrib>ZHU, Ke</creatorcontrib><creatorcontrib>Chen, Guan-Yu</creatorcontrib><title>Adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control for power conditioning applications</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>This paper develops an adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control (TVSMC) for the application of power conditioning systems. The presented methodology combines the merits of TVSMC, grey prediction (GP), and adaptive neuro-fuzzy inference system (ANFIS). Compared with classic sliding mode control, the TVSMC accelerates reaching phase and guarantees the sliding mode existence starting at arbitrary primary circumstance. But, as a highly nonlinear loading occurs, the TVSMC will undergo chattering and steady-state errors, thus degrading PCS’s performance. The GP is therefore used to attenuate the chattering if the overestimate of system uncertainty bounds exists and to lessen steady-state errors if the underestimate of system uncertainty bounds happens. Also, the GP-compensated TVSMC control gains are optimally tuned by the ANFIS for achieving more precise tracking. Using the proposed methodology, the power conditioning system (PCS) robustness is increased expectably, and low distorted output voltage and fast transient response at PCS output can be achieved even under nonlinear loading. The analysis in theory, design process, simulations, and digital signal processing-based experimental realization for PCS are represented to support the efficacy of the proposed methodology. Because the proposed methodology is easier to implement than prior methodologies and provides high tracking accuracy and low computational complexity, the contents of this paper will be of interest to learners of correlated artificial intelligence applications.</description><subject>Adaptive control</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Digital signal processing</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Grey prediction</subject><subject>Image Processing and Computer Vision</subject><subject>Inference</subject><subject>Iscmi15</subject><subject>Methodology</subject><subject>Nonlinear analysis</subject><subject>Power conditioning</subject><subject>Probability and Statistics in Computer Science</subject><subject>Sliding mode control</subject><subject>Steady state</subject><subject>Tracking</subject><subject>Uncertainty</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9Gk-Wh7XBa_QPCi55C2kyVL29SkXen-elNW8CQMDDPzvDPMi9Ato_eM0vwhUiozRihTJJNMEnaGVkxwTjiVxTla0VKkqRL8El3FuKeUClXIFTpsGjOM7gC4hyl4YqfjccautxCgrwHHOY7QkcpEaPAuwIxH1wE5mDC7fodj65old74BXPt-DL7F1gc8-G8IS6dxo_P9wphhaF1tljJeowtr2gg3v3mNPp8eP7Yv5O39-XW7eSM1Z2okGdhambJieSlAGqqkbaQRgltaVCKnEjJmhQUolMioqlTObQpQ6T3GWc3X6O60dwj-a4I46r2fQp9O6sQXpSryTCSKnag6-BgDWD0E16UXNaN6sVef7NXJXr3Yq1nSZCdNTGy_g_C3-X_RDzpXf2E</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Chang, En-Chih</creator><creator>Wu, Rong-Ching</creator><creator>ZHU, Ke</creator><creator>Chen, Guan-Yu</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180801</creationdate><title>Adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control for power conditioning applications</title><author>Chang, En-Chih ; Wu, Rong-Ching ; ZHU, Ke ; Chen, Guan-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2efc6a9b1794e5a065fd5a443f08b4705e21f4fee864206b673f73fe6004131c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive control</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Digital signal processing</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Grey prediction</topic><topic>Image Processing and Computer Vision</topic><topic>Inference</topic><topic>Iscmi15</topic><topic>Methodology</topic><topic>Nonlinear analysis</topic><topic>Power conditioning</topic><topic>Probability and Statistics in Computer Science</topic><topic>Sliding mode control</topic><topic>Steady state</topic><topic>Tracking</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, En-Chih</creatorcontrib><creatorcontrib>Wu, Rong-Ching</creatorcontrib><creatorcontrib>ZHU, Ke</creatorcontrib><creatorcontrib>Chen, Guan-Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, En-Chih</au><au>Wu, Rong-Ching</au><au>ZHU, Ke</au><au>Chen, Guan-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control for power conditioning applications</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>30</volume><issue>3</issue><spage>699</spage><epage>707</epage><pages>699-707</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>This paper develops an adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control (TVSMC) for the application of power conditioning systems. The presented methodology combines the merits of TVSMC, grey prediction (GP), and adaptive neuro-fuzzy inference system (ANFIS). Compared with classic sliding mode control, the TVSMC accelerates reaching phase and guarantees the sliding mode existence starting at arbitrary primary circumstance. But, as a highly nonlinear loading occurs, the TVSMC will undergo chattering and steady-state errors, thus degrading PCS’s performance. The GP is therefore used to attenuate the chattering if the overestimate of system uncertainty bounds exists and to lessen steady-state errors if the underestimate of system uncertainty bounds happens. Also, the GP-compensated TVSMC control gains are optimally tuned by the ANFIS for achieving more precise tracking. Using the proposed methodology, the power conditioning system (PCS) robustness is increased expectably, and low distorted output voltage and fast transient response at PCS output can be achieved even under nonlinear loading. The analysis in theory, design process, simulations, and digital signal processing-based experimental realization for PCS are represented to support the efficacy of the proposed methodology. Because the proposed methodology is easier to implement than prior methodologies and provides high tracking accuracy and low computational complexity, the contents of this paper will be of interest to learners of correlated artificial intelligence applications.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-016-2515-1</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2018-08, Vol.30 (3), p.699-707
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2068968724
source SpringerLink Journals - AutoHoldings
subjects Adaptive control
Artificial Intelligence
Artificial neural networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer simulation
Data Mining and Knowledge Discovery
Digital signal processing
Fuzzy logic
Fuzzy systems
Grey prediction
Image Processing and Computer Vision
Inference
Iscmi15
Methodology
Nonlinear analysis
Power conditioning
Probability and Statistics in Computer Science
Sliding mode control
Steady state
Tracking
Uncertainty
title Adaptive neuro-fuzzy inference system-based grey time-varying sliding mode control for power conditioning applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A25%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20neuro-fuzzy%20inference%20system-based%20grey%20time-varying%20sliding%20mode%20control%20for%20power%20conditioning%20applications&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Chang,%20En-Chih&rft.date=2018-08-01&rft.volume=30&rft.issue=3&rft.spage=699&rft.epage=707&rft.pages=699-707&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-016-2515-1&rft_dat=%3Cproquest_cross%3E2068968724%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068968724&rft_id=info:pmid/&rfr_iscdi=true