Optimal trajectory control for a two‐link rigid‐flexible manipulator with ODE‐PDE model
Summary In this paper, the optimal trajectory control problem for a two‐link rigid‐flexible manipulator is considered. Since the two‐link rigid‐flexible system is a distributed system, an ordinary differential equation and partial differential equation (ODE‐PDE) dynamic model of the manipulator is e...
Gespeichert in:
Veröffentlicht in: | Optimal control applications & methods 2018-07, Vol.39 (4), p.1515-1529 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1529 |
---|---|
container_issue | 4 |
container_start_page | 1515 |
container_title | Optimal control applications & methods |
container_volume | 39 |
creator | Cao, Fangfei Liu, Jinkun |
description | Summary
In this paper, the optimal trajectory control problem for a two‐link rigid‐flexible manipulator is considered. Since the two‐link rigid‐flexible system is a distributed system, an ordinary differential equation and partial differential equation (ODE‐PDE) dynamic model of the manipulator is established by Hamilton's principle. Based on the ODE‐PDE model, an optimal trajectory controller is proposed in this paper, which includes 2 stages. In the first stage, the optimal trajectory is created by using the differential evolution algorithm. Energy consumption and deflection of the flexible link are chosen as performance indexes. Cubic spline interpolation is applied to obtain the continuous trajectory. In the second stage, the aim is to regulate 2 joints to follow the optimal trajectory and simultaneously suppress vibration of the flexible link. To achieve it, boundary control laws are designed and the stability analysis is given. In simulations, the effectiveness of the optimal controller is verified by MATLAB. |
doi_str_mv | 10.1002/oca.2423 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2068813678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2068813678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2933-7e3e44d5e4a6d47f5a8a58003421f0012a7bb78fc09e1288f8751d82645165333</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EEqUgcQRLbNikjB-JnWVVykOqFBawRJab2ODixsVJVbrjCJyRk-BStqxGo_lmRv-H0DmBEQGgV6HWI8opO0ADAmWZkZzwQzQAwllGQYpjdNJ1CwAQhNEBeq5WvVtqj_uoF6buQ9ziOrR9DB7bELHG_SZ8f355177h6F5ckxrrzYebe4OXunWrtddpDW9c_4qr62maP1xP8TI0xp-iI6t9Z87-6hA93UwfJ3fZrLq9n4xnWU1LxjJhmOG8yQ3XRcOFzbXUuQRgnBILQKgW87mQtobSECqllSInjaQFz0mRM8aG6GJ_dxXD-9p0vVqEdWzTS0WhkJKwQshEXe6pOoaui8aqVUzZ41YRUDt5KslTO3kJzfboxnmz_ZdT1WT8y_8AbSxxjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068813678</pqid></control><display><type>article</type><title>Optimal trajectory control for a two‐link rigid‐flexible manipulator with ODE‐PDE model</title><source>Access via Wiley Online Library</source><creator>Cao, Fangfei ; Liu, Jinkun</creator><creatorcontrib>Cao, Fangfei ; Liu, Jinkun</creatorcontrib><description>Summary
In this paper, the optimal trajectory control problem for a two‐link rigid‐flexible manipulator is considered. Since the two‐link rigid‐flexible system is a distributed system, an ordinary differential equation and partial differential equation (ODE‐PDE) dynamic model of the manipulator is established by Hamilton's principle. Based on the ODE‐PDE model, an optimal trajectory controller is proposed in this paper, which includes 2 stages. In the first stage, the optimal trajectory is created by using the differential evolution algorithm. Energy consumption and deflection of the flexible link are chosen as performance indexes. Cubic spline interpolation is applied to obtain the continuous trajectory. In the second stage, the aim is to regulate 2 joints to follow the optimal trajectory and simultaneously suppress vibration of the flexible link. To achieve it, boundary control laws are designed and the stability analysis is given. In simulations, the effectiveness of the optimal controller is verified by MATLAB.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.2423</identifier><language>eng</language><publisher>Glasgow: Wiley Subscription Services, Inc</publisher><subject>Boundary control ; Computer networks ; Computer simulation ; Control stability ; Dynamic models ; Energy consumption ; Evolutionary algorithms ; Flexible manipulators ; Hamilton's principle ; Interpolation ; ODE‐PDE model ; optimal trajectory control ; Ordinary differential equations ; Partial differential equations ; Performance indices ; Stability analysis ; Trajectory control ; two‐link rigid‐flexible manipulator</subject><ispartof>Optimal control applications & methods, 2018-07, Vol.39 (4), p.1515-1529</ispartof><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><rights>2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2933-7e3e44d5e4a6d47f5a8a58003421f0012a7bb78fc09e1288f8751d82645165333</citedby><cites>FETCH-LOGICAL-c2933-7e3e44d5e4a6d47f5a8a58003421f0012a7bb78fc09e1288f8751d82645165333</cites><orcidid>0000-0002-6276-8360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foca.2423$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foca.2423$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Cao, Fangfei</creatorcontrib><creatorcontrib>Liu, Jinkun</creatorcontrib><title>Optimal trajectory control for a two‐link rigid‐flexible manipulator with ODE‐PDE model</title><title>Optimal control applications & methods</title><description>Summary
In this paper, the optimal trajectory control problem for a two‐link rigid‐flexible manipulator is considered. Since the two‐link rigid‐flexible system is a distributed system, an ordinary differential equation and partial differential equation (ODE‐PDE) dynamic model of the manipulator is established by Hamilton's principle. Based on the ODE‐PDE model, an optimal trajectory controller is proposed in this paper, which includes 2 stages. In the first stage, the optimal trajectory is created by using the differential evolution algorithm. Energy consumption and deflection of the flexible link are chosen as performance indexes. Cubic spline interpolation is applied to obtain the continuous trajectory. In the second stage, the aim is to regulate 2 joints to follow the optimal trajectory and simultaneously suppress vibration of the flexible link. To achieve it, boundary control laws are designed and the stability analysis is given. In simulations, the effectiveness of the optimal controller is verified by MATLAB.</description><subject>Boundary control</subject><subject>Computer networks</subject><subject>Computer simulation</subject><subject>Control stability</subject><subject>Dynamic models</subject><subject>Energy consumption</subject><subject>Evolutionary algorithms</subject><subject>Flexible manipulators</subject><subject>Hamilton's principle</subject><subject>Interpolation</subject><subject>ODE‐PDE model</subject><subject>optimal trajectory control</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Performance indices</subject><subject>Stability analysis</subject><subject>Trajectory control</subject><subject>two‐link rigid‐flexible manipulator</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhi0EEqUgcQRLbNikjB-JnWVVykOqFBawRJab2ODixsVJVbrjCJyRk-BStqxGo_lmRv-H0DmBEQGgV6HWI8opO0ADAmWZkZzwQzQAwllGQYpjdNJ1CwAQhNEBeq5WvVtqj_uoF6buQ9ziOrR9DB7bELHG_SZ8f355177h6F5ckxrrzYebe4OXunWrtddpDW9c_4qr62maP1xP8TI0xp-iI6t9Z87-6hA93UwfJ3fZrLq9n4xnWU1LxjJhmOG8yQ3XRcOFzbXUuQRgnBILQKgW87mQtobSECqllSInjaQFz0mRM8aG6GJ_dxXD-9p0vVqEdWzTS0WhkJKwQshEXe6pOoaui8aqVUzZ41YRUDt5KslTO3kJzfboxnmz_ZdT1WT8y_8AbSxxjw</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Cao, Fangfei</creator><creator>Liu, Jinkun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6276-8360</orcidid></search><sort><creationdate>201807</creationdate><title>Optimal trajectory control for a two‐link rigid‐flexible manipulator with ODE‐PDE model</title><author>Cao, Fangfei ; Liu, Jinkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2933-7e3e44d5e4a6d47f5a8a58003421f0012a7bb78fc09e1288f8751d82645165333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary control</topic><topic>Computer networks</topic><topic>Computer simulation</topic><topic>Control stability</topic><topic>Dynamic models</topic><topic>Energy consumption</topic><topic>Evolutionary algorithms</topic><topic>Flexible manipulators</topic><topic>Hamilton's principle</topic><topic>Interpolation</topic><topic>ODE‐PDE model</topic><topic>optimal trajectory control</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Performance indices</topic><topic>Stability analysis</topic><topic>Trajectory control</topic><topic>two‐link rigid‐flexible manipulator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Fangfei</creatorcontrib><creatorcontrib>Liu, Jinkun</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optimal control applications & methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Fangfei</au><au>Liu, Jinkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal trajectory control for a two‐link rigid‐flexible manipulator with ODE‐PDE model</atitle><jtitle>Optimal control applications & methods</jtitle><date>2018-07</date><risdate>2018</risdate><volume>39</volume><issue>4</issue><spage>1515</spage><epage>1529</epage><pages>1515-1529</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>Summary
In this paper, the optimal trajectory control problem for a two‐link rigid‐flexible manipulator is considered. Since the two‐link rigid‐flexible system is a distributed system, an ordinary differential equation and partial differential equation (ODE‐PDE) dynamic model of the manipulator is established by Hamilton's principle. Based on the ODE‐PDE model, an optimal trajectory controller is proposed in this paper, which includes 2 stages. In the first stage, the optimal trajectory is created by using the differential evolution algorithm. Energy consumption and deflection of the flexible link are chosen as performance indexes. Cubic spline interpolation is applied to obtain the continuous trajectory. In the second stage, the aim is to regulate 2 joints to follow the optimal trajectory and simultaneously suppress vibration of the flexible link. To achieve it, boundary control laws are designed and the stability analysis is given. In simulations, the effectiveness of the optimal controller is verified by MATLAB.</abstract><cop>Glasgow</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/oca.2423</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6276-8360</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-2087 |
ispartof | Optimal control applications & methods, 2018-07, Vol.39 (4), p.1515-1529 |
issn | 0143-2087 1099-1514 |
language | eng |
recordid | cdi_proquest_journals_2068813678 |
source | Access via Wiley Online Library |
subjects | Boundary control Computer networks Computer simulation Control stability Dynamic models Energy consumption Evolutionary algorithms Flexible manipulators Hamilton's principle Interpolation ODE‐PDE model optimal trajectory control Ordinary differential equations Partial differential equations Performance indices Stability analysis Trajectory control two‐link rigid‐flexible manipulator |
title | Optimal trajectory control for a two‐link rigid‐flexible manipulator with ODE‐PDE model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20trajectory%20control%20for%20a%20two%E2%80%90link%20rigid%E2%80%90flexible%20manipulator%20with%20ODE%E2%80%90PDE%20model&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Cao,%20Fangfei&rft.date=2018-07&rft.volume=39&rft.issue=4&rft.spage=1515&rft.epage=1529&rft.pages=1515-1529&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.2423&rft_dat=%3Cproquest_cross%3E2068813678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068813678&rft_id=info:pmid/&rfr_iscdi=true |