Optimal trajectory control for a two‐link rigid‐flexible manipulator with ODE‐PDE model

Summary In this paper, the optimal trajectory control problem for a two‐link rigid‐flexible manipulator is considered. Since the two‐link rigid‐flexible system is a distributed system, an ordinary differential equation and partial differential equation (ODE‐PDE) dynamic model of the manipulator is e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimal control applications & methods 2018-07, Vol.39 (4), p.1515-1529
Hauptverfasser: Cao, Fangfei, Liu, Jinkun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1529
container_issue 4
container_start_page 1515
container_title Optimal control applications & methods
container_volume 39
creator Cao, Fangfei
Liu, Jinkun
description Summary In this paper, the optimal trajectory control problem for a two‐link rigid‐flexible manipulator is considered. Since the two‐link rigid‐flexible system is a distributed system, an ordinary differential equation and partial differential equation (ODE‐PDE) dynamic model of the manipulator is established by Hamilton's principle. Based on the ODE‐PDE model, an optimal trajectory controller is proposed in this paper, which includes 2 stages. In the first stage, the optimal trajectory is created by using the differential evolution algorithm. Energy consumption and deflection of the flexible link are chosen as performance indexes. Cubic spline interpolation is applied to obtain the continuous trajectory. In the second stage, the aim is to regulate 2 joints to follow the optimal trajectory and simultaneously suppress vibration of the flexible link. To achieve it, boundary control laws are designed and the stability analysis is given. In simulations, the effectiveness of the optimal controller is verified by MATLAB.
doi_str_mv 10.1002/oca.2423
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2068813678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2068813678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2933-7e3e44d5e4a6d47f5a8a58003421f0012a7bb78fc09e1288f8751d82645165333</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EEqUgcQRLbNikjB-JnWVVykOqFBawRJab2ODixsVJVbrjCJyRk-BStqxGo_lmRv-H0DmBEQGgV6HWI8opO0ADAmWZkZzwQzQAwllGQYpjdNJ1CwAQhNEBeq5WvVtqj_uoF6buQ9ziOrR9DB7bELHG_SZ8f355177h6F5ckxrrzYebe4OXunWrtddpDW9c_4qr62maP1xP8TI0xp-iI6t9Z87-6hA93UwfJ3fZrLq9n4xnWU1LxjJhmOG8yQ3XRcOFzbXUuQRgnBILQKgW87mQtobSECqllSInjaQFz0mRM8aG6GJ_dxXD-9p0vVqEdWzTS0WhkJKwQshEXe6pOoaui8aqVUzZ41YRUDt5KslTO3kJzfboxnmz_ZdT1WT8y_8AbSxxjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068813678</pqid></control><display><type>article</type><title>Optimal trajectory control for a two‐link rigid‐flexible manipulator with ODE‐PDE model</title><source>Access via Wiley Online Library</source><creator>Cao, Fangfei ; Liu, Jinkun</creator><creatorcontrib>Cao, Fangfei ; Liu, Jinkun</creatorcontrib><description>Summary In this paper, the optimal trajectory control problem for a two‐link rigid‐flexible manipulator is considered. Since the two‐link rigid‐flexible system is a distributed system, an ordinary differential equation and partial differential equation (ODE‐PDE) dynamic model of the manipulator is established by Hamilton's principle. Based on the ODE‐PDE model, an optimal trajectory controller is proposed in this paper, which includes 2 stages. In the first stage, the optimal trajectory is created by using the differential evolution algorithm. Energy consumption and deflection of the flexible link are chosen as performance indexes. Cubic spline interpolation is applied to obtain the continuous trajectory. In the second stage, the aim is to regulate 2 joints to follow the optimal trajectory and simultaneously suppress vibration of the flexible link. To achieve it, boundary control laws are designed and the stability analysis is given. In simulations, the effectiveness of the optimal controller is verified by MATLAB.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.2423</identifier><language>eng</language><publisher>Glasgow: Wiley Subscription Services, Inc</publisher><subject>Boundary control ; Computer networks ; Computer simulation ; Control stability ; Dynamic models ; Energy consumption ; Evolutionary algorithms ; Flexible manipulators ; Hamilton's principle ; Interpolation ; ODE‐PDE model ; optimal trajectory control ; Ordinary differential equations ; Partial differential equations ; Performance indices ; Stability analysis ; Trajectory control ; two‐link rigid‐flexible manipulator</subject><ispartof>Optimal control applications &amp; methods, 2018-07, Vol.39 (4), p.1515-1529</ispartof><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><rights>2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2933-7e3e44d5e4a6d47f5a8a58003421f0012a7bb78fc09e1288f8751d82645165333</citedby><cites>FETCH-LOGICAL-c2933-7e3e44d5e4a6d47f5a8a58003421f0012a7bb78fc09e1288f8751d82645165333</cites><orcidid>0000-0002-6276-8360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foca.2423$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foca.2423$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Cao, Fangfei</creatorcontrib><creatorcontrib>Liu, Jinkun</creatorcontrib><title>Optimal trajectory control for a two‐link rigid‐flexible manipulator with ODE‐PDE model</title><title>Optimal control applications &amp; methods</title><description>Summary In this paper, the optimal trajectory control problem for a two‐link rigid‐flexible manipulator is considered. Since the two‐link rigid‐flexible system is a distributed system, an ordinary differential equation and partial differential equation (ODE‐PDE) dynamic model of the manipulator is established by Hamilton's principle. Based on the ODE‐PDE model, an optimal trajectory controller is proposed in this paper, which includes 2 stages. In the first stage, the optimal trajectory is created by using the differential evolution algorithm. Energy consumption and deflection of the flexible link are chosen as performance indexes. Cubic spline interpolation is applied to obtain the continuous trajectory. In the second stage, the aim is to regulate 2 joints to follow the optimal trajectory and simultaneously suppress vibration of the flexible link. To achieve it, boundary control laws are designed and the stability analysis is given. In simulations, the effectiveness of the optimal controller is verified by MATLAB.</description><subject>Boundary control</subject><subject>Computer networks</subject><subject>Computer simulation</subject><subject>Control stability</subject><subject>Dynamic models</subject><subject>Energy consumption</subject><subject>Evolutionary algorithms</subject><subject>Flexible manipulators</subject><subject>Hamilton's principle</subject><subject>Interpolation</subject><subject>ODE‐PDE model</subject><subject>optimal trajectory control</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Performance indices</subject><subject>Stability analysis</subject><subject>Trajectory control</subject><subject>two‐link rigid‐flexible manipulator</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhi0EEqUgcQRLbNikjB-JnWVVykOqFBawRJab2ODixsVJVbrjCJyRk-BStqxGo_lmRv-H0DmBEQGgV6HWI8opO0ADAmWZkZzwQzQAwllGQYpjdNJ1CwAQhNEBeq5WvVtqj_uoF6buQ9ziOrR9DB7bELHG_SZ8f355177h6F5ckxrrzYebe4OXunWrtddpDW9c_4qr62maP1xP8TI0xp-iI6t9Z87-6hA93UwfJ3fZrLq9n4xnWU1LxjJhmOG8yQ3XRcOFzbXUuQRgnBILQKgW87mQtobSECqllSInjaQFz0mRM8aG6GJ_dxXD-9p0vVqEdWzTS0WhkJKwQshEXe6pOoaui8aqVUzZ41YRUDt5KslTO3kJzfboxnmz_ZdT1WT8y_8AbSxxjw</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Cao, Fangfei</creator><creator>Liu, Jinkun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6276-8360</orcidid></search><sort><creationdate>201807</creationdate><title>Optimal trajectory control for a two‐link rigid‐flexible manipulator with ODE‐PDE model</title><author>Cao, Fangfei ; Liu, Jinkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2933-7e3e44d5e4a6d47f5a8a58003421f0012a7bb78fc09e1288f8751d82645165333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary control</topic><topic>Computer networks</topic><topic>Computer simulation</topic><topic>Control stability</topic><topic>Dynamic models</topic><topic>Energy consumption</topic><topic>Evolutionary algorithms</topic><topic>Flexible manipulators</topic><topic>Hamilton's principle</topic><topic>Interpolation</topic><topic>ODE‐PDE model</topic><topic>optimal trajectory control</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Performance indices</topic><topic>Stability analysis</topic><topic>Trajectory control</topic><topic>two‐link rigid‐flexible manipulator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Fangfei</creatorcontrib><creatorcontrib>Liu, Jinkun</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optimal control applications &amp; methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Fangfei</au><au>Liu, Jinkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal trajectory control for a two‐link rigid‐flexible manipulator with ODE‐PDE model</atitle><jtitle>Optimal control applications &amp; methods</jtitle><date>2018-07</date><risdate>2018</risdate><volume>39</volume><issue>4</issue><spage>1515</spage><epage>1529</epage><pages>1515-1529</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>Summary In this paper, the optimal trajectory control problem for a two‐link rigid‐flexible manipulator is considered. Since the two‐link rigid‐flexible system is a distributed system, an ordinary differential equation and partial differential equation (ODE‐PDE) dynamic model of the manipulator is established by Hamilton's principle. Based on the ODE‐PDE model, an optimal trajectory controller is proposed in this paper, which includes 2 stages. In the first stage, the optimal trajectory is created by using the differential evolution algorithm. Energy consumption and deflection of the flexible link are chosen as performance indexes. Cubic spline interpolation is applied to obtain the continuous trajectory. In the second stage, the aim is to regulate 2 joints to follow the optimal trajectory and simultaneously suppress vibration of the flexible link. To achieve it, boundary control laws are designed and the stability analysis is given. In simulations, the effectiveness of the optimal controller is verified by MATLAB.</abstract><cop>Glasgow</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/oca.2423</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6276-8360</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0143-2087
ispartof Optimal control applications & methods, 2018-07, Vol.39 (4), p.1515-1529
issn 0143-2087
1099-1514
language eng
recordid cdi_proquest_journals_2068813678
source Access via Wiley Online Library
subjects Boundary control
Computer networks
Computer simulation
Control stability
Dynamic models
Energy consumption
Evolutionary algorithms
Flexible manipulators
Hamilton's principle
Interpolation
ODE‐PDE model
optimal trajectory control
Ordinary differential equations
Partial differential equations
Performance indices
Stability analysis
Trajectory control
two‐link rigid‐flexible manipulator
title Optimal trajectory control for a two‐link rigid‐flexible manipulator with ODE‐PDE model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A06%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20trajectory%20control%20for%20a%20two%E2%80%90link%20rigid%E2%80%90flexible%20manipulator%20with%20ODE%E2%80%90PDE%20model&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Cao,%20Fangfei&rft.date=2018-07&rft.volume=39&rft.issue=4&rft.spage=1515&rft.epage=1529&rft.pages=1515-1529&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.2423&rft_dat=%3Cproquest_cross%3E2068813678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068813678&rft_id=info:pmid/&rfr_iscdi=true