Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data
The upcoming Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) mission will offer prospects for mapping and monitoring biomass and carbon of terrestrial ecosystems over large areas using photon counting LiDAR data. In this paper, we aim to develop a methodology to derive terrain elevation and veg...
Gespeichert in:
Veröffentlicht in: | Remote sensing of environment 2018-04, Vol.208, p.154-170 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 170 |
---|---|
container_issue | |
container_start_page | 154 |
container_title | Remote sensing of environment |
container_volume | 208 |
creator | Popescu, S.C. Zhou, T. Nelson, R. Neuenschwander, A. Sheridan, R. Narine, L. Walsh, K.M. |
description | The upcoming Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) mission will offer prospects for mapping and monitoring biomass and carbon of terrestrial ecosystems over large areas using photon counting LiDAR data. In this paper, we aim to develop a methodology to derive terrain elevation and vegetation canopy height from test-bed sensor data and further pre-validate the capacity of the mission to meet its science objectives for the ecosystem community. We investigated a novel methodological framework with two essential steps for characterizing terrain and canopy height using Multiple Altimeter Beam Experimental LiDAR (MABEL) data and simulated ICESat-2 data with various vegetation conditions. Our algorithm first implements a multi-level noise filtering approach to minimize noise photons and subsequently classifies the remaining photons into ground and top of canopy using an overlapping moving window method and cubic spline interpolation. Results of noise filtering show that the design of the multi-level filtering process is effective to identify background noise and preserve signal photons in the raw data. Moreover, calibration results using MABEL and simulated ICESat-2 data share similar trends with the retrieved terrain being more accurate than the retrieved canopy height, and the nighttime results being better than corresponding daytime results. Compared to the results of simulated ICESat-2 data, MABEL data achieve lower accuracy for ground and canopy heights in terms of root mean square error (RMSE), which may partly result from the inconsistency between MABEL and reference data. Specifically, simulated ICESat-2 data using 115 various nighttime and daytime scenarios, yield average RMSE values of 1.83 m and 2.80 m for estimated ground elevation, and 2.70 m and 3.59 m for estimated canopy height. Additionally, the accuracy assessment of percentile heights of simulated ICESat-2 data further substantiates the robustness of the methodology from different perspectives. The methodology developed in this study illustrates plausible ways of processing the data that are structurally similar to expected ICESat-2 data and holds the potential to be a benchmark for further method adjustment once genuine ICESat-2 are available.
•An adaptive methodological framework was developed to process upcoming ICESat-2 data.•Basic algorithms for ground and canopy photon classification with ICESat-2-like data.•Terrain and canopy height measurements with MABEL and simulated IC |
doi_str_mv | 10.1016/j.rse.2018.02.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2068491631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0034425718300269</els_id><sourcerecordid>2068491631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-ec93697b7d5b4958ce96c6bfeeeb9cfc4bc03f3cc391324a53ee88d598233ab43</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7hF4tySNGmbwGkaAyZNAvFxjtLU7VJtTUmySfv3dBpnDpYPfh_behC6pSSlhBb3XeoDpBmhIiVZSqg8QxMqSpmQkvBzNCGE8YRneXmJrkLoCKG5KOkE6fe1i67Hxu36aPsWr-zT7OMBz3qsaz1Euwfc-nFYYz2W0b0bDngNtl1H7CF6C3u9wXrTOm_jeosb5_FyvvjUMclwraO-RheN3gS4-etT9P28-Jq_Jqu3l-V8tkoMK3hMwEhWyLIq67ziMhcGZGGKqgGASprG8MoQ1jBjmKQs4zpnAELUuRQZY7ribIruTnsH7352EKLq3M7340mVkUJwSQtGxxQ9pYx3IXho1ODtVvuDokQdTapOjSbV0aQimRpNjszjiYHx_b0Fr4Kx0BuorQcTVe3sP_QvuMt7zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068491631</pqid></control><display><type>article</type><title>Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data</title><source>Access via ScienceDirect (Elsevier)</source><creator>Popescu, S.C. ; Zhou, T. ; Nelson, R. ; Neuenschwander, A. ; Sheridan, R. ; Narine, L. ; Walsh, K.M.</creator><creatorcontrib>Popescu, S.C. ; Zhou, T. ; Nelson, R. ; Neuenschwander, A. ; Sheridan, R. ; Narine, L. ; Walsh, K.M.</creatorcontrib><description>The upcoming Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) mission will offer prospects for mapping and monitoring biomass and carbon of terrestrial ecosystems over large areas using photon counting LiDAR data. In this paper, we aim to develop a methodology to derive terrain elevation and vegetation canopy height from test-bed sensor data and further pre-validate the capacity of the mission to meet its science objectives for the ecosystem community. We investigated a novel methodological framework with two essential steps for characterizing terrain and canopy height using Multiple Altimeter Beam Experimental LiDAR (MABEL) data and simulated ICESat-2 data with various vegetation conditions. Our algorithm first implements a multi-level noise filtering approach to minimize noise photons and subsequently classifies the remaining photons into ground and top of canopy using an overlapping moving window method and cubic spline interpolation. Results of noise filtering show that the design of the multi-level filtering process is effective to identify background noise and preserve signal photons in the raw data. Moreover, calibration results using MABEL and simulated ICESat-2 data share similar trends with the retrieved terrain being more accurate than the retrieved canopy height, and the nighttime results being better than corresponding daytime results. Compared to the results of simulated ICESat-2 data, MABEL data achieve lower accuracy for ground and canopy heights in terms of root mean square error (RMSE), which may partly result from the inconsistency between MABEL and reference data. Specifically, simulated ICESat-2 data using 115 various nighttime and daytime scenarios, yield average RMSE values of 1.83 m and 2.80 m for estimated ground elevation, and 2.70 m and 3.59 m for estimated canopy height. Additionally, the accuracy assessment of percentile heights of simulated ICESat-2 data further substantiates the robustness of the methodology from different perspectives. The methodology developed in this study illustrates plausible ways of processing the data that are structurally similar to expected ICESat-2 data and holds the potential to be a benchmark for further method adjustment once genuine ICESat-2 are available.
•An adaptive methodological framework was developed to process upcoming ICESat-2 data.•Basic algorithms for ground and canopy photon classification with ICESat-2-like data.•Terrain and canopy height measurements with MABEL and simulated ICESat-2 data.</description><identifier>ISSN: 0034-4257</identifier><identifier>EISSN: 1879-0704</identifier><identifier>DOI: 10.1016/j.rse.2018.02.019</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Adaptive algorithms ; Algorithms ; Altimeters ; Atoms & subatomic particles ; Background noise ; Biomass ; Calibration ; Canopies ; Canopy height ; Carbon ; Computer simulation ; Data processing ; Daytime ; Ecological monitoring ; Elevation ; Filtration ; Ice clouds ; ICESat-2 ; Interpolation ; Lidar ; MABEL ; Mapping ; Methodology ; Night ; Nighttime ; Noise ; Photon classification ; Photon counting LiDAR ; Photons ; Remote sensing ; Root-mean-square errors ; Signal processing ; Terrain ; Terrain elevation ; Terrestrial ecosystems ; Terrestrial environments ; Vegetation</subject><ispartof>Remote sensing of environment, 2018-04, Vol.208, p.154-170</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier BV Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-ec93697b7d5b4958ce96c6bfeeeb9cfc4bc03f3cc391324a53ee88d598233ab43</citedby><cites>FETCH-LOGICAL-c364t-ec93697b7d5b4958ce96c6bfeeeb9cfc4bc03f3cc391324a53ee88d598233ab43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.rse.2018.02.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Popescu, S.C.</creatorcontrib><creatorcontrib>Zhou, T.</creatorcontrib><creatorcontrib>Nelson, R.</creatorcontrib><creatorcontrib>Neuenschwander, A.</creatorcontrib><creatorcontrib>Sheridan, R.</creatorcontrib><creatorcontrib>Narine, L.</creatorcontrib><creatorcontrib>Walsh, K.M.</creatorcontrib><title>Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data</title><title>Remote sensing of environment</title><description>The upcoming Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) mission will offer prospects for mapping and monitoring biomass and carbon of terrestrial ecosystems over large areas using photon counting LiDAR data. In this paper, we aim to develop a methodology to derive terrain elevation and vegetation canopy height from test-bed sensor data and further pre-validate the capacity of the mission to meet its science objectives for the ecosystem community. We investigated a novel methodological framework with two essential steps for characterizing terrain and canopy height using Multiple Altimeter Beam Experimental LiDAR (MABEL) data and simulated ICESat-2 data with various vegetation conditions. Our algorithm first implements a multi-level noise filtering approach to minimize noise photons and subsequently classifies the remaining photons into ground and top of canopy using an overlapping moving window method and cubic spline interpolation. Results of noise filtering show that the design of the multi-level filtering process is effective to identify background noise and preserve signal photons in the raw data. Moreover, calibration results using MABEL and simulated ICESat-2 data share similar trends with the retrieved terrain being more accurate than the retrieved canopy height, and the nighttime results being better than corresponding daytime results. Compared to the results of simulated ICESat-2 data, MABEL data achieve lower accuracy for ground and canopy heights in terms of root mean square error (RMSE), which may partly result from the inconsistency between MABEL and reference data. Specifically, simulated ICESat-2 data using 115 various nighttime and daytime scenarios, yield average RMSE values of 1.83 m and 2.80 m for estimated ground elevation, and 2.70 m and 3.59 m for estimated canopy height. Additionally, the accuracy assessment of percentile heights of simulated ICESat-2 data further substantiates the robustness of the methodology from different perspectives. The methodology developed in this study illustrates plausible ways of processing the data that are structurally similar to expected ICESat-2 data and holds the potential to be a benchmark for further method adjustment once genuine ICESat-2 are available.
•An adaptive methodological framework was developed to process upcoming ICESat-2 data.•Basic algorithms for ground and canopy photon classification with ICESat-2-like data.•Terrain and canopy height measurements with MABEL and simulated ICESat-2 data.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Altimeters</subject><subject>Atoms & subatomic particles</subject><subject>Background noise</subject><subject>Biomass</subject><subject>Calibration</subject><subject>Canopies</subject><subject>Canopy height</subject><subject>Carbon</subject><subject>Computer simulation</subject><subject>Data processing</subject><subject>Daytime</subject><subject>Ecological monitoring</subject><subject>Elevation</subject><subject>Filtration</subject><subject>Ice clouds</subject><subject>ICESat-2</subject><subject>Interpolation</subject><subject>Lidar</subject><subject>MABEL</subject><subject>Mapping</subject><subject>Methodology</subject><subject>Night</subject><subject>Nighttime</subject><subject>Noise</subject><subject>Photon classification</subject><subject>Photon counting LiDAR</subject><subject>Photons</subject><subject>Remote sensing</subject><subject>Root-mean-square errors</subject><subject>Signal processing</subject><subject>Terrain</subject><subject>Terrain elevation</subject><subject>Terrestrial ecosystems</subject><subject>Terrestrial environments</subject><subject>Vegetation</subject><issn>0034-4257</issn><issn>1879-0704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7hF4tySNGmbwGkaAyZNAvFxjtLU7VJtTUmySfv3dBpnDpYPfh_behC6pSSlhBb3XeoDpBmhIiVZSqg8QxMqSpmQkvBzNCGE8YRneXmJrkLoCKG5KOkE6fe1i67Hxu36aPsWr-zT7OMBz3qsaz1Euwfc-nFYYz2W0b0bDngNtl1H7CF6C3u9wXrTOm_jeosb5_FyvvjUMclwraO-RheN3gS4-etT9P28-Jq_Jqu3l-V8tkoMK3hMwEhWyLIq67ziMhcGZGGKqgGASprG8MoQ1jBjmKQs4zpnAELUuRQZY7ribIruTnsH7352EKLq3M7340mVkUJwSQtGxxQ9pYx3IXho1ODtVvuDokQdTapOjSbV0aQimRpNjszjiYHx_b0Fr4Kx0BuorQcTVe3sP_QvuMt7zw</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Popescu, S.C.</creator><creator>Zhou, T.</creator><creator>Nelson, R.</creator><creator>Neuenschwander, A.</creator><creator>Sheridan, R.</creator><creator>Narine, L.</creator><creator>Walsh, K.M.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TG</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20180401</creationdate><title>Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data</title><author>Popescu, S.C. ; Zhou, T. ; Nelson, R. ; Neuenschwander, A. ; Sheridan, R. ; Narine, L. ; Walsh, K.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-ec93697b7d5b4958ce96c6bfeeeb9cfc4bc03f3cc391324a53ee88d598233ab43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Altimeters</topic><topic>Atoms & subatomic particles</topic><topic>Background noise</topic><topic>Biomass</topic><topic>Calibration</topic><topic>Canopies</topic><topic>Canopy height</topic><topic>Carbon</topic><topic>Computer simulation</topic><topic>Data processing</topic><topic>Daytime</topic><topic>Ecological monitoring</topic><topic>Elevation</topic><topic>Filtration</topic><topic>Ice clouds</topic><topic>ICESat-2</topic><topic>Interpolation</topic><topic>Lidar</topic><topic>MABEL</topic><topic>Mapping</topic><topic>Methodology</topic><topic>Night</topic><topic>Nighttime</topic><topic>Noise</topic><topic>Photon classification</topic><topic>Photon counting LiDAR</topic><topic>Photons</topic><topic>Remote sensing</topic><topic>Root-mean-square errors</topic><topic>Signal processing</topic><topic>Terrain</topic><topic>Terrain elevation</topic><topic>Terrestrial ecosystems</topic><topic>Terrestrial environments</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Popescu, S.C.</creatorcontrib><creatorcontrib>Zhou, T.</creatorcontrib><creatorcontrib>Nelson, R.</creatorcontrib><creatorcontrib>Neuenschwander, A.</creatorcontrib><creatorcontrib>Sheridan, R.</creatorcontrib><creatorcontrib>Narine, L.</creatorcontrib><creatorcontrib>Walsh, K.M.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Remote sensing of environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Popescu, S.C.</au><au>Zhou, T.</au><au>Nelson, R.</au><au>Neuenschwander, A.</au><au>Sheridan, R.</au><au>Narine, L.</au><au>Walsh, K.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data</atitle><jtitle>Remote sensing of environment</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>208</volume><spage>154</spage><epage>170</epage><pages>154-170</pages><issn>0034-4257</issn><eissn>1879-0704</eissn><abstract>The upcoming Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) mission will offer prospects for mapping and monitoring biomass and carbon of terrestrial ecosystems over large areas using photon counting LiDAR data. In this paper, we aim to develop a methodology to derive terrain elevation and vegetation canopy height from test-bed sensor data and further pre-validate the capacity of the mission to meet its science objectives for the ecosystem community. We investigated a novel methodological framework with two essential steps for characterizing terrain and canopy height using Multiple Altimeter Beam Experimental LiDAR (MABEL) data and simulated ICESat-2 data with various vegetation conditions. Our algorithm first implements a multi-level noise filtering approach to minimize noise photons and subsequently classifies the remaining photons into ground and top of canopy using an overlapping moving window method and cubic spline interpolation. Results of noise filtering show that the design of the multi-level filtering process is effective to identify background noise and preserve signal photons in the raw data. Moreover, calibration results using MABEL and simulated ICESat-2 data share similar trends with the retrieved terrain being more accurate than the retrieved canopy height, and the nighttime results being better than corresponding daytime results. Compared to the results of simulated ICESat-2 data, MABEL data achieve lower accuracy for ground and canopy heights in terms of root mean square error (RMSE), which may partly result from the inconsistency between MABEL and reference data. Specifically, simulated ICESat-2 data using 115 various nighttime and daytime scenarios, yield average RMSE values of 1.83 m and 2.80 m for estimated ground elevation, and 2.70 m and 3.59 m for estimated canopy height. Additionally, the accuracy assessment of percentile heights of simulated ICESat-2 data further substantiates the robustness of the methodology from different perspectives. The methodology developed in this study illustrates plausible ways of processing the data that are structurally similar to expected ICESat-2 data and holds the potential to be a benchmark for further method adjustment once genuine ICESat-2 are available.
•An adaptive methodological framework was developed to process upcoming ICESat-2 data.•Basic algorithms for ground and canopy photon classification with ICESat-2-like data.•Terrain and canopy height measurements with MABEL and simulated ICESat-2 data.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.rse.2018.02.019</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-4257 |
ispartof | Remote sensing of environment, 2018-04, Vol.208, p.154-170 |
issn | 0034-4257 1879-0704 |
language | eng |
recordid | cdi_proquest_journals_2068491631 |
source | Access via ScienceDirect (Elsevier) |
subjects | Adaptive algorithms Algorithms Altimeters Atoms & subatomic particles Background noise Biomass Calibration Canopies Canopy height Carbon Computer simulation Data processing Daytime Ecological monitoring Elevation Filtration Ice clouds ICESat-2 Interpolation Lidar MABEL Mapping Methodology Night Nighttime Noise Photon classification Photon counting LiDAR Photons Remote sensing Root-mean-square errors Signal processing Terrain Terrain elevation Terrestrial ecosystems Terrestrial environments Vegetation |
title | Photon counting LiDAR: An adaptive ground and canopy height retrieval algorithm for ICESat-2 data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A51%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photon%20counting%20LiDAR:%20An%20adaptive%20ground%20and%20canopy%20height%20retrieval%20algorithm%20for%20ICESat-2%20data&rft.jtitle=Remote%20sensing%20of%20environment&rft.au=Popescu,%20S.C.&rft.date=2018-04-01&rft.volume=208&rft.spage=154&rft.epage=170&rft.pages=154-170&rft.issn=0034-4257&rft.eissn=1879-0704&rft_id=info:doi/10.1016/j.rse.2018.02.019&rft_dat=%3Cproquest_cross%3E2068491631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068491631&rft_id=info:pmid/&rft_els_id=S0034425718300269&rfr_iscdi=true |