Prediction of microstructure in selective laser melted Ti 6Al 4V alloy by cellular automaton

Selective laser melting (SLM), as a powder-bed-based additive manufacturing technology, is a promising technology for manufacturing metal parts with high geometric complexity. The prediction of the SLMed microstructure, a key approach to manipulate the microstructures and performances, is challengin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2018-06, Vol.748, p.281-290
Hauptverfasser: Yang, Jingjing, Yu, Hanchen, Yang, Huihui, Li, Fanzhi, Wang, Zemin, Zeng, Xiaoyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 290
container_issue
container_start_page 281
container_title Journal of alloys and compounds
container_volume 748
creator Yang, Jingjing
Yu, Hanchen
Yang, Huihui
Li, Fanzhi
Wang, Zemin
Zeng, Xiaoyan
description Selective laser melting (SLM), as a powder-bed-based additive manufacturing technology, is a promising technology for manufacturing metal parts with high geometric complexity. The prediction of the SLMed microstructure, a key approach to manipulate the microstructures and performances, is challenging due to the complex heat history involving multiple thermal cycles. In the work, the microstructural simulation of solidification and solid-state phase transformation processes under various spatially variable thermal cycles of SLM was investigated by a developed two-dimensional cellular automaton (CA) model considering the temperature distribution and transient thermal history. The morphology and size of the β grain and martensite simulated by the model agree well with the experimental results in single-layer, thin-wall and multi-track multi-layer samples. Based on the simulated results, there are three zones (powder melting, remelting and reheating zones) and four stages (powder melting, mushy, multi-phases and solid-state phase transformation stages) during SLM depositing Ti-6Al-4V alloy. The morphology, growth direction and size of prior β grains depend mainly on the direction of heat flux and overlapping of adjacent deposited tracks. Six evolutional types of β grains exist including disappearance, morphological change, size increasing to be a stable value, growing, size decreases to be a stable value, and no evolution. The prediction of microstructure in SLMed alloy can be realized by the developed CA model.
doi_str_mv 10.1016/j.jallcom.2018.03.116
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2068487585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2068487585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-8f4ffcacdec65551b900c74550e2900021f647420b9fa5930be1cd8d766f7d643</originalsourceid><addsrcrecordid>eNotkEtLxDAUhYMoOI7-BCHguvWmeTRdDoMvGNDF6EoIaZpAS9qMSSrMv7eDs7oH7uEczofQPYGSABGPQzlo700YywqILIGWhIgLtCKypgUTorlEK2gqXkgq5TW6SWkAANJQskLfH9F2vcl9mHBweOxNDCnH2eQ5WtxPOFlvl_evxV4nG_FofbYd3vdYbDxmX3ipDkfcHrGx3s9eR6znHEadw3SLrpz2yd6d7xp9Pj_tt6_F7v3lbbvZFaaSJBfSMeeMNp01gnNO2gbA1IxzsNUioSJOsJpV0DZO84ZCa4npZFcL4epOMLpGD_-5hxh-ZpuyGsIcp6VSVSAkkzWXfHHxf9dpYorWqUPsRx2PioA6gVSDOoNUJ5AKqFpA0j8o52lQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068487585</pqid></control><display><type>article</type><title>Prediction of microstructure in selective laser melted Ti 6Al 4V alloy by cellular automaton</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, Jingjing ; Yu, Hanchen ; Yang, Huihui ; Li, Fanzhi ; Wang, Zemin ; Zeng, Xiaoyan</creator><creatorcontrib>Yang, Jingjing ; Yu, Hanchen ; Yang, Huihui ; Li, Fanzhi ; Wang, Zemin ; Zeng, Xiaoyan</creatorcontrib><description>Selective laser melting (SLM), as a powder-bed-based additive manufacturing technology, is a promising technology for manufacturing metal parts with high geometric complexity. The prediction of the SLMed microstructure, a key approach to manipulate the microstructures and performances, is challenging due to the complex heat history involving multiple thermal cycles. In the work, the microstructural simulation of solidification and solid-state phase transformation processes under various spatially variable thermal cycles of SLM was investigated by a developed two-dimensional cellular automaton (CA) model considering the temperature distribution and transient thermal history. The morphology and size of the β grain and martensite simulated by the model agree well with the experimental results in single-layer, thin-wall and multi-track multi-layer samples. Based on the simulated results, there are three zones (powder melting, remelting and reheating zones) and four stages (powder melting, mushy, multi-phases and solid-state phase transformation stages) during SLM depositing Ti-6Al-4V alloy. The morphology, growth direction and size of prior β grains depend mainly on the direction of heat flux and overlapping of adjacent deposited tracks. Six evolutional types of β grains exist including disappearance, morphological change, size increasing to be a stable value, growing, size decreases to be a stable value, and no evolution. The prediction of microstructure in SLMed alloy can be realized by the developed CA model.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2018.03.116</identifier><language>eng</language><publisher>Lausanne: Elsevier BV</publisher><subject>Cellular automata ; Cellular manufacture ; Chemical reactions ; Complexity ; Computer simulation ; Electrocatalysis ; Grains ; Heat flux ; Heating ; Laser beam melting ; Martensite ; Martensitic transformations ; Mathematical models ; Mathematical morphology ; Melting ; Microstructure ; Multilayers ; Phase transitions ; Solid state ; Solidification ; Temperature distribution ; Titanium ; Titanium base alloys ; Titanium nitride ; Toxicology ; Two dimensional models</subject><ispartof>Journal of alloys and compounds, 2018-06, Vol.748, p.281-290</ispartof><rights>Copyright Elsevier BV Jun 5, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-8f4ffcacdec65551b900c74550e2900021f647420b9fa5930be1cd8d766f7d643</citedby><cites>FETCH-LOGICAL-c281t-8f4ffcacdec65551b900c74550e2900021f647420b9fa5930be1cd8d766f7d643</cites><orcidid>0000-0003-3932-913X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Jingjing</creatorcontrib><creatorcontrib>Yu, Hanchen</creatorcontrib><creatorcontrib>Yang, Huihui</creatorcontrib><creatorcontrib>Li, Fanzhi</creatorcontrib><creatorcontrib>Wang, Zemin</creatorcontrib><creatorcontrib>Zeng, Xiaoyan</creatorcontrib><title>Prediction of microstructure in selective laser melted Ti 6Al 4V alloy by cellular automaton</title><title>Journal of alloys and compounds</title><description>Selective laser melting (SLM), as a powder-bed-based additive manufacturing technology, is a promising technology for manufacturing metal parts with high geometric complexity. The prediction of the SLMed microstructure, a key approach to manipulate the microstructures and performances, is challenging due to the complex heat history involving multiple thermal cycles. In the work, the microstructural simulation of solidification and solid-state phase transformation processes under various spatially variable thermal cycles of SLM was investigated by a developed two-dimensional cellular automaton (CA) model considering the temperature distribution and transient thermal history. The morphology and size of the β grain and martensite simulated by the model agree well with the experimental results in single-layer, thin-wall and multi-track multi-layer samples. Based on the simulated results, there are three zones (powder melting, remelting and reheating zones) and four stages (powder melting, mushy, multi-phases and solid-state phase transformation stages) during SLM depositing Ti-6Al-4V alloy. The morphology, growth direction and size of prior β grains depend mainly on the direction of heat flux and overlapping of adjacent deposited tracks. Six evolutional types of β grains exist including disappearance, morphological change, size increasing to be a stable value, growing, size decreases to be a stable value, and no evolution. The prediction of microstructure in SLMed alloy can be realized by the developed CA model.</description><subject>Cellular automata</subject><subject>Cellular manufacture</subject><subject>Chemical reactions</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Electrocatalysis</subject><subject>Grains</subject><subject>Heat flux</subject><subject>Heating</subject><subject>Laser beam melting</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Mathematical models</subject><subject>Mathematical morphology</subject><subject>Melting</subject><subject>Microstructure</subject><subject>Multilayers</subject><subject>Phase transitions</subject><subject>Solid state</subject><subject>Solidification</subject><subject>Temperature distribution</subject><subject>Titanium</subject><subject>Titanium base alloys</subject><subject>Titanium nitride</subject><subject>Toxicology</subject><subject>Two dimensional models</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkEtLxDAUhYMoOI7-BCHguvWmeTRdDoMvGNDF6EoIaZpAS9qMSSrMv7eDs7oH7uEczofQPYGSABGPQzlo700YywqILIGWhIgLtCKypgUTorlEK2gqXkgq5TW6SWkAANJQskLfH9F2vcl9mHBweOxNDCnH2eQ5WtxPOFlvl_evxV4nG_FofbYd3vdYbDxmX3ipDkfcHrGx3s9eR6znHEadw3SLrpz2yd6d7xp9Pj_tt6_F7v3lbbvZFaaSJBfSMeeMNp01gnNO2gbA1IxzsNUioSJOsJpV0DZO84ZCa4npZFcL4epOMLpGD_-5hxh-ZpuyGsIcp6VSVSAkkzWXfHHxf9dpYorWqUPsRx2PioA6gVSDOoNUJ5AKqFpA0j8o52lQ</recordid><startdate>20180605</startdate><enddate>20180605</enddate><creator>Yang, Jingjing</creator><creator>Yu, Hanchen</creator><creator>Yang, Huihui</creator><creator>Li, Fanzhi</creator><creator>Wang, Zemin</creator><creator>Zeng, Xiaoyan</creator><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3932-913X</orcidid></search><sort><creationdate>20180605</creationdate><title>Prediction of microstructure in selective laser melted Ti 6Al 4V alloy by cellular automaton</title><author>Yang, Jingjing ; Yu, Hanchen ; Yang, Huihui ; Li, Fanzhi ; Wang, Zemin ; Zeng, Xiaoyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-8f4ffcacdec65551b900c74550e2900021f647420b9fa5930be1cd8d766f7d643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cellular automata</topic><topic>Cellular manufacture</topic><topic>Chemical reactions</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Electrocatalysis</topic><topic>Grains</topic><topic>Heat flux</topic><topic>Heating</topic><topic>Laser beam melting</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Mathematical models</topic><topic>Mathematical morphology</topic><topic>Melting</topic><topic>Microstructure</topic><topic>Multilayers</topic><topic>Phase transitions</topic><topic>Solid state</topic><topic>Solidification</topic><topic>Temperature distribution</topic><topic>Titanium</topic><topic>Titanium base alloys</topic><topic>Titanium nitride</topic><topic>Toxicology</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jingjing</creatorcontrib><creatorcontrib>Yu, Hanchen</creatorcontrib><creatorcontrib>Yang, Huihui</creatorcontrib><creatorcontrib>Li, Fanzhi</creatorcontrib><creatorcontrib>Wang, Zemin</creatorcontrib><creatorcontrib>Zeng, Xiaoyan</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jingjing</au><au>Yu, Hanchen</au><au>Yang, Huihui</au><au>Li, Fanzhi</au><au>Wang, Zemin</au><au>Zeng, Xiaoyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of microstructure in selective laser melted Ti 6Al 4V alloy by cellular automaton</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2018-06-05</date><risdate>2018</risdate><volume>748</volume><spage>281</spage><epage>290</epage><pages>281-290</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Selective laser melting (SLM), as a powder-bed-based additive manufacturing technology, is a promising technology for manufacturing metal parts with high geometric complexity. The prediction of the SLMed microstructure, a key approach to manipulate the microstructures and performances, is challenging due to the complex heat history involving multiple thermal cycles. In the work, the microstructural simulation of solidification and solid-state phase transformation processes under various spatially variable thermal cycles of SLM was investigated by a developed two-dimensional cellular automaton (CA) model considering the temperature distribution and transient thermal history. The morphology and size of the β grain and martensite simulated by the model agree well with the experimental results in single-layer, thin-wall and multi-track multi-layer samples. Based on the simulated results, there are three zones (powder melting, remelting and reheating zones) and four stages (powder melting, mushy, multi-phases and solid-state phase transformation stages) during SLM depositing Ti-6Al-4V alloy. The morphology, growth direction and size of prior β grains depend mainly on the direction of heat flux and overlapping of adjacent deposited tracks. Six evolutional types of β grains exist including disappearance, morphological change, size increasing to be a stable value, growing, size decreases to be a stable value, and no evolution. The prediction of microstructure in SLMed alloy can be realized by the developed CA model.</abstract><cop>Lausanne</cop><pub>Elsevier BV</pub><doi>10.1016/j.jallcom.2018.03.116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3932-913X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2018-06, Vol.748, p.281-290
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2068487585
source Elsevier ScienceDirect Journals Complete
subjects Cellular automata
Cellular manufacture
Chemical reactions
Complexity
Computer simulation
Electrocatalysis
Grains
Heat flux
Heating
Laser beam melting
Martensite
Martensitic transformations
Mathematical models
Mathematical morphology
Melting
Microstructure
Multilayers
Phase transitions
Solid state
Solidification
Temperature distribution
Titanium
Titanium base alloys
Titanium nitride
Toxicology
Two dimensional models
title Prediction of microstructure in selective laser melted Ti 6Al 4V alloy by cellular automaton
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20microstructure%20in%20selective%20laser%20melted%20Ti%206Al%204V%20alloy%20by%20cellular%20automaton&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Yang,%20Jingjing&rft.date=2018-06-05&rft.volume=748&rft.spage=281&rft.epage=290&rft.pages=281-290&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2018.03.116&rft_dat=%3Cproquest_cross%3E2068487585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068487585&rft_id=info:pmid/&rfr_iscdi=true