Prediction of microstructure in selective laser melted Ti 6Al 4V alloy by cellular automaton
Selective laser melting (SLM), as a powder-bed-based additive manufacturing technology, is a promising technology for manufacturing metal parts with high geometric complexity. The prediction of the SLMed microstructure, a key approach to manipulate the microstructures and performances, is challengin...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2018-06, Vol.748, p.281-290 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 290 |
---|---|
container_issue | |
container_start_page | 281 |
container_title | Journal of alloys and compounds |
container_volume | 748 |
creator | Yang, Jingjing Yu, Hanchen Yang, Huihui Li, Fanzhi Wang, Zemin Zeng, Xiaoyan |
description | Selective laser melting (SLM), as a powder-bed-based additive manufacturing technology, is a promising technology for manufacturing metal parts with high geometric complexity. The prediction of the SLMed microstructure, a key approach to manipulate the microstructures and performances, is challenging due to the complex heat history involving multiple thermal cycles. In the work, the microstructural simulation of solidification and solid-state phase transformation processes under various spatially variable thermal cycles of SLM was investigated by a developed two-dimensional cellular automaton (CA) model considering the temperature distribution and transient thermal history. The morphology and size of the β grain and martensite simulated by the model agree well with the experimental results in single-layer, thin-wall and multi-track multi-layer samples. Based on the simulated results, there are three zones (powder melting, remelting and reheating zones) and four stages (powder melting, mushy, multi-phases and solid-state phase transformation stages) during SLM depositing Ti-6Al-4V alloy. The morphology, growth direction and size of prior β grains depend mainly on the direction of heat flux and overlapping of adjacent deposited tracks. Six evolutional types of β grains exist including disappearance, morphological change, size increasing to be a stable value, growing, size decreases to be a stable value, and no evolution. The prediction of microstructure in SLMed alloy can be realized by the developed CA model. |
doi_str_mv | 10.1016/j.jallcom.2018.03.116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2068487585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2068487585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-8f4ffcacdec65551b900c74550e2900021f647420b9fa5930be1cd8d766f7d643</originalsourceid><addsrcrecordid>eNotkEtLxDAUhYMoOI7-BCHguvWmeTRdDoMvGNDF6EoIaZpAS9qMSSrMv7eDs7oH7uEczofQPYGSABGPQzlo700YywqILIGWhIgLtCKypgUTorlEK2gqXkgq5TW6SWkAANJQskLfH9F2vcl9mHBweOxNDCnH2eQ5WtxPOFlvl_evxV4nG_FofbYd3vdYbDxmX3ipDkfcHrGx3s9eR6znHEadw3SLrpz2yd6d7xp9Pj_tt6_F7v3lbbvZFaaSJBfSMeeMNp01gnNO2gbA1IxzsNUioSJOsJpV0DZO84ZCa4npZFcL4epOMLpGD_-5hxh-ZpuyGsIcp6VSVSAkkzWXfHHxf9dpYorWqUPsRx2PioA6gVSDOoNUJ5AKqFpA0j8o52lQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068487585</pqid></control><display><type>article</type><title>Prediction of microstructure in selective laser melted Ti 6Al 4V alloy by cellular automaton</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Yang, Jingjing ; Yu, Hanchen ; Yang, Huihui ; Li, Fanzhi ; Wang, Zemin ; Zeng, Xiaoyan</creator><creatorcontrib>Yang, Jingjing ; Yu, Hanchen ; Yang, Huihui ; Li, Fanzhi ; Wang, Zemin ; Zeng, Xiaoyan</creatorcontrib><description>Selective laser melting (SLM), as a powder-bed-based additive manufacturing technology, is a promising technology for manufacturing metal parts with high geometric complexity. The prediction of the SLMed microstructure, a key approach to manipulate the microstructures and performances, is challenging due to the complex heat history involving multiple thermal cycles. In the work, the microstructural simulation of solidification and solid-state phase transformation processes under various spatially variable thermal cycles of SLM was investigated by a developed two-dimensional cellular automaton (CA) model considering the temperature distribution and transient thermal history. The morphology and size of the β grain and martensite simulated by the model agree well with the experimental results in single-layer, thin-wall and multi-track multi-layer samples. Based on the simulated results, there are three zones (powder melting, remelting and reheating zones) and four stages (powder melting, mushy, multi-phases and solid-state phase transformation stages) during SLM depositing Ti-6Al-4V alloy. The morphology, growth direction and size of prior β grains depend mainly on the direction of heat flux and overlapping of adjacent deposited tracks. Six evolutional types of β grains exist including disappearance, morphological change, size increasing to be a stable value, growing, size decreases to be a stable value, and no evolution. The prediction of microstructure in SLMed alloy can be realized by the developed CA model.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2018.03.116</identifier><language>eng</language><publisher>Lausanne: Elsevier BV</publisher><subject>Cellular automata ; Cellular manufacture ; Chemical reactions ; Complexity ; Computer simulation ; Electrocatalysis ; Grains ; Heat flux ; Heating ; Laser beam melting ; Martensite ; Martensitic transformations ; Mathematical models ; Mathematical morphology ; Melting ; Microstructure ; Multilayers ; Phase transitions ; Solid state ; Solidification ; Temperature distribution ; Titanium ; Titanium base alloys ; Titanium nitride ; Toxicology ; Two dimensional models</subject><ispartof>Journal of alloys and compounds, 2018-06, Vol.748, p.281-290</ispartof><rights>Copyright Elsevier BV Jun 5, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-8f4ffcacdec65551b900c74550e2900021f647420b9fa5930be1cd8d766f7d643</citedby><cites>FETCH-LOGICAL-c281t-8f4ffcacdec65551b900c74550e2900021f647420b9fa5930be1cd8d766f7d643</cites><orcidid>0000-0003-3932-913X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Jingjing</creatorcontrib><creatorcontrib>Yu, Hanchen</creatorcontrib><creatorcontrib>Yang, Huihui</creatorcontrib><creatorcontrib>Li, Fanzhi</creatorcontrib><creatorcontrib>Wang, Zemin</creatorcontrib><creatorcontrib>Zeng, Xiaoyan</creatorcontrib><title>Prediction of microstructure in selective laser melted Ti 6Al 4V alloy by cellular automaton</title><title>Journal of alloys and compounds</title><description>Selective laser melting (SLM), as a powder-bed-based additive manufacturing technology, is a promising technology for manufacturing metal parts with high geometric complexity. The prediction of the SLMed microstructure, a key approach to manipulate the microstructures and performances, is challenging due to the complex heat history involving multiple thermal cycles. In the work, the microstructural simulation of solidification and solid-state phase transformation processes under various spatially variable thermal cycles of SLM was investigated by a developed two-dimensional cellular automaton (CA) model considering the temperature distribution and transient thermal history. The morphology and size of the β grain and martensite simulated by the model agree well with the experimental results in single-layer, thin-wall and multi-track multi-layer samples. Based on the simulated results, there are three zones (powder melting, remelting and reheating zones) and four stages (powder melting, mushy, multi-phases and solid-state phase transformation stages) during SLM depositing Ti-6Al-4V alloy. The morphology, growth direction and size of prior β grains depend mainly on the direction of heat flux and overlapping of adjacent deposited tracks. Six evolutional types of β grains exist including disappearance, morphological change, size increasing to be a stable value, growing, size decreases to be a stable value, and no evolution. The prediction of microstructure in SLMed alloy can be realized by the developed CA model.</description><subject>Cellular automata</subject><subject>Cellular manufacture</subject><subject>Chemical reactions</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Electrocatalysis</subject><subject>Grains</subject><subject>Heat flux</subject><subject>Heating</subject><subject>Laser beam melting</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Mathematical models</subject><subject>Mathematical morphology</subject><subject>Melting</subject><subject>Microstructure</subject><subject>Multilayers</subject><subject>Phase transitions</subject><subject>Solid state</subject><subject>Solidification</subject><subject>Temperature distribution</subject><subject>Titanium</subject><subject>Titanium base alloys</subject><subject>Titanium nitride</subject><subject>Toxicology</subject><subject>Two dimensional models</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkEtLxDAUhYMoOI7-BCHguvWmeTRdDoMvGNDF6EoIaZpAS9qMSSrMv7eDs7oH7uEczofQPYGSABGPQzlo700YywqILIGWhIgLtCKypgUTorlEK2gqXkgq5TW6SWkAANJQskLfH9F2vcl9mHBweOxNDCnH2eQ5WtxPOFlvl_evxV4nG_FofbYd3vdYbDxmX3ipDkfcHrGx3s9eR6znHEadw3SLrpz2yd6d7xp9Pj_tt6_F7v3lbbvZFaaSJBfSMeeMNp01gnNO2gbA1IxzsNUioSJOsJpV0DZO84ZCa4npZFcL4epOMLpGD_-5hxh-ZpuyGsIcp6VSVSAkkzWXfHHxf9dpYorWqUPsRx2PioA6gVSDOoNUJ5AKqFpA0j8o52lQ</recordid><startdate>20180605</startdate><enddate>20180605</enddate><creator>Yang, Jingjing</creator><creator>Yu, Hanchen</creator><creator>Yang, Huihui</creator><creator>Li, Fanzhi</creator><creator>Wang, Zemin</creator><creator>Zeng, Xiaoyan</creator><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-3932-913X</orcidid></search><sort><creationdate>20180605</creationdate><title>Prediction of microstructure in selective laser melted Ti 6Al 4V alloy by cellular automaton</title><author>Yang, Jingjing ; Yu, Hanchen ; Yang, Huihui ; Li, Fanzhi ; Wang, Zemin ; Zeng, Xiaoyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-8f4ffcacdec65551b900c74550e2900021f647420b9fa5930be1cd8d766f7d643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cellular automata</topic><topic>Cellular manufacture</topic><topic>Chemical reactions</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Electrocatalysis</topic><topic>Grains</topic><topic>Heat flux</topic><topic>Heating</topic><topic>Laser beam melting</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Mathematical models</topic><topic>Mathematical morphology</topic><topic>Melting</topic><topic>Microstructure</topic><topic>Multilayers</topic><topic>Phase transitions</topic><topic>Solid state</topic><topic>Solidification</topic><topic>Temperature distribution</topic><topic>Titanium</topic><topic>Titanium base alloys</topic><topic>Titanium nitride</topic><topic>Toxicology</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jingjing</creatorcontrib><creatorcontrib>Yu, Hanchen</creatorcontrib><creatorcontrib>Yang, Huihui</creatorcontrib><creatorcontrib>Li, Fanzhi</creatorcontrib><creatorcontrib>Wang, Zemin</creatorcontrib><creatorcontrib>Zeng, Xiaoyan</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jingjing</au><au>Yu, Hanchen</au><au>Yang, Huihui</au><au>Li, Fanzhi</au><au>Wang, Zemin</au><au>Zeng, Xiaoyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of microstructure in selective laser melted Ti 6Al 4V alloy by cellular automaton</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2018-06-05</date><risdate>2018</risdate><volume>748</volume><spage>281</spage><epage>290</epage><pages>281-290</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Selective laser melting (SLM), as a powder-bed-based additive manufacturing technology, is a promising technology for manufacturing metal parts with high geometric complexity. The prediction of the SLMed microstructure, a key approach to manipulate the microstructures and performances, is challenging due to the complex heat history involving multiple thermal cycles. In the work, the microstructural simulation of solidification and solid-state phase transformation processes under various spatially variable thermal cycles of SLM was investigated by a developed two-dimensional cellular automaton (CA) model considering the temperature distribution and transient thermal history. The morphology and size of the β grain and martensite simulated by the model agree well with the experimental results in single-layer, thin-wall and multi-track multi-layer samples. Based on the simulated results, there are three zones (powder melting, remelting and reheating zones) and four stages (powder melting, mushy, multi-phases and solid-state phase transformation stages) during SLM depositing Ti-6Al-4V alloy. The morphology, growth direction and size of prior β grains depend mainly on the direction of heat flux and overlapping of adjacent deposited tracks. Six evolutional types of β grains exist including disappearance, morphological change, size increasing to be a stable value, growing, size decreases to be a stable value, and no evolution. The prediction of microstructure in SLMed alloy can be realized by the developed CA model.</abstract><cop>Lausanne</cop><pub>Elsevier BV</pub><doi>10.1016/j.jallcom.2018.03.116</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3932-913X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2018-06, Vol.748, p.281-290 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2068487585 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Cellular automata Cellular manufacture Chemical reactions Complexity Computer simulation Electrocatalysis Grains Heat flux Heating Laser beam melting Martensite Martensitic transformations Mathematical models Mathematical morphology Melting Microstructure Multilayers Phase transitions Solid state Solidification Temperature distribution Titanium Titanium base alloys Titanium nitride Toxicology Two dimensional models |
title | Prediction of microstructure in selective laser melted Ti 6Al 4V alloy by cellular automaton |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20microstructure%20in%20selective%20laser%20melted%20Ti%206Al%204V%20alloy%20by%20cellular%20automaton&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Yang,%20Jingjing&rft.date=2018-06-05&rft.volume=748&rft.spage=281&rft.epage=290&rft.pages=281-290&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2018.03.116&rft_dat=%3Cproquest_cross%3E2068487585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068487585&rft_id=info:pmid/&rfr_iscdi=true |