Sensitivity of streamflow to climate change in California

Climate change is rapidly altering the global water cycle, exposing vulnerabilities in both social and environmental systems. However, uncertainty in future climate predictions makes it difficult to design and evaluate strategies for building climate resilience. In regions such as California, charac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climatic change 2018-08, Vol.149 (3-4), p.427-441
Hauptverfasser: Grantham, Theodore E. W., Carlisle, Daren M., McCabe, Gregory J., Howard, Jeanette K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 441
container_issue 3-4
container_start_page 427
container_title Climatic change
container_volume 149
creator Grantham, Theodore E. W.
Carlisle, Daren M.
McCabe, Gregory J.
Howard, Jeanette K.
description Climate change is rapidly altering the global water cycle, exposing vulnerabilities in both social and environmental systems. However, uncertainty in future climate predictions makes it difficult to design and evaluate strategies for building climate resilience. In regions such as California, characterized by stressed water-supply systems, high natural climate variability, and substantial uncertainty in future precipitation projections, alternative approaches to assessing climate risks may be useful. Here, we develop a hydrologic sensitivity approach to estimate regional streamflow responses to climate change in California. We use statistical models to predict monthly streamflow from physical catchment features and evaluate how flow changes with incremental changes in precipitation and temperature. The results indicate unique regional and monthly flow responses to climate change, with early summer flows (May–July) in interior mountain region having the greatest sensitivity to temperature and winter flows (December–March) in the xeric region having the greatest sensitivity to precipitation. When evaluated over the range of global climate model projections for mid-century (2040–2069), models generally suggest shifts in streamflow regimes towards higher wet season flows and lower dry season flows relative to historical conditions. The sensitivity analysis provides insight into catchment- and regional-scale hydrologic responses in California and complements other approaches for understanding the consequences of climatic change for water and risk management.
doi_str_mv 10.1007/s10584-018-2244-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2068187785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2068187785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-88184c8b3a787fac0f04af5f2993b36921abf3cb0e32edec4b1cb39ba098ecc13</originalsourceid><addsrcrecordid>eNp1kEFPAyEQhYnRxFr9Ad5IPKMD7C5wNI1akyYe1DMBBKXZ7lagmv57adbEk6eZw3tv5n0IXVK4pgDiJlNoZUOASsJY0xB1hGa0FZzQRsIxmgHtWgIA6hSd5bw-bIJ1M6Se_ZBjiV-x7PEYcC7Jm03ox29cRuz6uDHFY_dhhneP44AXpo9hTEM05-gkmD77i985R6_3dy-LJVk9PTwublfEcdoVIiWVjZOWGyFFMA4CNCa0gSnFLe8Uo8YG7ix4zvybd42lznJlDSjpnaN8jq6m3G0aP3c-F70ed2moJzWDrqYLIduqopPKpTHn5IPepvp72msK-kBIT4R0JaQPhLSqHjZ5ctXWfukv-X_TD-kyaM8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068187785</pqid></control><display><type>article</type><title>Sensitivity of streamflow to climate change in California</title><source>PAIS Index</source><source>SpringerLink Journals - AutoHoldings</source><creator>Grantham, Theodore E. W. ; Carlisle, Daren M. ; McCabe, Gregory J. ; Howard, Jeanette K.</creator><creatorcontrib>Grantham, Theodore E. W. ; Carlisle, Daren M. ; McCabe, Gregory J. ; Howard, Jeanette K.</creatorcontrib><description>Climate change is rapidly altering the global water cycle, exposing vulnerabilities in both social and environmental systems. However, uncertainty in future climate predictions makes it difficult to design and evaluate strategies for building climate resilience. In regions such as California, characterized by stressed water-supply systems, high natural climate variability, and substantial uncertainty in future precipitation projections, alternative approaches to assessing climate risks may be useful. Here, we develop a hydrologic sensitivity approach to estimate regional streamflow responses to climate change in California. We use statistical models to predict monthly streamflow from physical catchment features and evaluate how flow changes with incremental changes in precipitation and temperature. The results indicate unique regional and monthly flow responses to climate change, with early summer flows (May–July) in interior mountain region having the greatest sensitivity to temperature and winter flows (December–March) in the xeric region having the greatest sensitivity to precipitation. When evaluated over the range of global climate model projections for mid-century (2040–2069), models generally suggest shifts in streamflow regimes towards higher wet season flows and lower dry season flows relative to historical conditions. The sensitivity analysis provides insight into catchment- and regional-scale hydrologic responses in California and complements other approaches for understanding the consequences of climatic change for water and risk management.</description><identifier>ISSN: 0165-0009</identifier><identifier>EISSN: 1573-1480</identifier><identifier>DOI: 10.1007/s10584-018-2244-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Alternative approaches ; Atmospheric Sciences ; Catchment area ; Climate adaptation ; Climate change ; Climate Change/Climate Change Impacts ; Climate models ; Climate prediction ; Climate variability ; Dry season ; Earth and Environmental Science ; Earth Sciences ; Environmental assessment ; Environmental risk ; Future climates ; Future precipitation ; Global climate ; Global climate models ; Hydrologic cycle ; Hydrologic models ; Hydrological cycle ; Hydrology ; Mathematical models ; Mountain regions ; Precipitation ; Rainy season ; Regional development ; Regions ; Risk management ; Sensitivity analysis ; Statistical analysis ; Statistical models ; Stream discharge ; Stream flow ; Temperature ; Uncertainty ; Water conveyance ; Water resources management ; Water supply ; Wet season</subject><ispartof>Climatic change, 2018-08, Vol.149 (3-4), p.427-441</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Climatic Change is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-88184c8b3a787fac0f04af5f2993b36921abf3cb0e32edec4b1cb39ba098ecc13</citedby><cites>FETCH-LOGICAL-c316t-88184c8b3a787fac0f04af5f2993b36921abf3cb0e32edec4b1cb39ba098ecc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10584-018-2244-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10584-018-2244-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27843,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Grantham, Theodore E. W.</creatorcontrib><creatorcontrib>Carlisle, Daren M.</creatorcontrib><creatorcontrib>McCabe, Gregory J.</creatorcontrib><creatorcontrib>Howard, Jeanette K.</creatorcontrib><title>Sensitivity of streamflow to climate change in California</title><title>Climatic change</title><addtitle>Climatic Change</addtitle><description>Climate change is rapidly altering the global water cycle, exposing vulnerabilities in both social and environmental systems. However, uncertainty in future climate predictions makes it difficult to design and evaluate strategies for building climate resilience. In regions such as California, characterized by stressed water-supply systems, high natural climate variability, and substantial uncertainty in future precipitation projections, alternative approaches to assessing climate risks may be useful. Here, we develop a hydrologic sensitivity approach to estimate regional streamflow responses to climate change in California. We use statistical models to predict monthly streamflow from physical catchment features and evaluate how flow changes with incremental changes in precipitation and temperature. The results indicate unique regional and monthly flow responses to climate change, with early summer flows (May–July) in interior mountain region having the greatest sensitivity to temperature and winter flows (December–March) in the xeric region having the greatest sensitivity to precipitation. When evaluated over the range of global climate model projections for mid-century (2040–2069), models generally suggest shifts in streamflow regimes towards higher wet season flows and lower dry season flows relative to historical conditions. The sensitivity analysis provides insight into catchment- and regional-scale hydrologic responses in California and complements other approaches for understanding the consequences of climatic change for water and risk management.</description><subject>Alternative approaches</subject><subject>Atmospheric Sciences</subject><subject>Catchment area</subject><subject>Climate adaptation</subject><subject>Climate change</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Climate models</subject><subject>Climate prediction</subject><subject>Climate variability</subject><subject>Dry season</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental assessment</subject><subject>Environmental risk</subject><subject>Future climates</subject><subject>Future precipitation</subject><subject>Global climate</subject><subject>Global climate models</subject><subject>Hydrologic cycle</subject><subject>Hydrologic models</subject><subject>Hydrological cycle</subject><subject>Hydrology</subject><subject>Mathematical models</subject><subject>Mountain regions</subject><subject>Precipitation</subject><subject>Rainy season</subject><subject>Regional development</subject><subject>Regions</subject><subject>Risk management</subject><subject>Sensitivity analysis</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Temperature</subject><subject>Uncertainty</subject><subject>Water conveyance</subject><subject>Water resources management</subject><subject>Water supply</subject><subject>Wet season</subject><issn>0165-0009</issn><issn>1573-1480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEFPAyEQhYnRxFr9Ad5IPKMD7C5wNI1akyYe1DMBBKXZ7lagmv57adbEk6eZw3tv5n0IXVK4pgDiJlNoZUOASsJY0xB1hGa0FZzQRsIxmgHtWgIA6hSd5bw-bIJ1M6Se_ZBjiV-x7PEYcC7Jm03ox29cRuz6uDHFY_dhhneP44AXpo9hTEM05-gkmD77i985R6_3dy-LJVk9PTwublfEcdoVIiWVjZOWGyFFMA4CNCa0gSnFLe8Uo8YG7ix4zvybd42lznJlDSjpnaN8jq6m3G0aP3c-F70ed2moJzWDrqYLIduqopPKpTHn5IPepvp72msK-kBIT4R0JaQPhLSqHjZ5ctXWfukv-X_TD-kyaM8</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Grantham, Theodore E. W.</creator><creator>Carlisle, Daren M.</creator><creator>McCabe, Gregory J.</creator><creator>Howard, Jeanette K.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>7TQ</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DHY</scope><scope>DON</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KL.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>SOI</scope></search><sort><creationdate>20180801</creationdate><title>Sensitivity of streamflow to climate change in California</title><author>Grantham, Theodore E. W. ; Carlisle, Daren M. ; McCabe, Gregory J. ; Howard, Jeanette K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-88184c8b3a787fac0f04af5f2993b36921abf3cb0e32edec4b1cb39ba098ecc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alternative approaches</topic><topic>Atmospheric Sciences</topic><topic>Catchment area</topic><topic>Climate adaptation</topic><topic>Climate change</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Climate models</topic><topic>Climate prediction</topic><topic>Climate variability</topic><topic>Dry season</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental assessment</topic><topic>Environmental risk</topic><topic>Future climates</topic><topic>Future precipitation</topic><topic>Global climate</topic><topic>Global climate models</topic><topic>Hydrologic cycle</topic><topic>Hydrologic models</topic><topic>Hydrological cycle</topic><topic>Hydrology</topic><topic>Mathematical models</topic><topic>Mountain regions</topic><topic>Precipitation</topic><topic>Rainy season</topic><topic>Regional development</topic><topic>Regions</topic><topic>Risk management</topic><topic>Sensitivity analysis</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Temperature</topic><topic>Uncertainty</topic><topic>Water conveyance</topic><topic>Water resources management</topic><topic>Water supply</topic><topic>Wet season</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grantham, Theodore E. W.</creatorcontrib><creatorcontrib>Carlisle, Daren M.</creatorcontrib><creatorcontrib>McCabe, Gregory J.</creatorcontrib><creatorcontrib>Howard, Jeanette K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>PAIS Index</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Environment Abstracts</collection><jtitle>Climatic change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grantham, Theodore E. W.</au><au>Carlisle, Daren M.</au><au>McCabe, Gregory J.</au><au>Howard, Jeanette K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity of streamflow to climate change in California</atitle><jtitle>Climatic change</jtitle><stitle>Climatic Change</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>149</volume><issue>3-4</issue><spage>427</spage><epage>441</epage><pages>427-441</pages><issn>0165-0009</issn><eissn>1573-1480</eissn><abstract>Climate change is rapidly altering the global water cycle, exposing vulnerabilities in both social and environmental systems. However, uncertainty in future climate predictions makes it difficult to design and evaluate strategies for building climate resilience. In regions such as California, characterized by stressed water-supply systems, high natural climate variability, and substantial uncertainty in future precipitation projections, alternative approaches to assessing climate risks may be useful. Here, we develop a hydrologic sensitivity approach to estimate regional streamflow responses to climate change in California. We use statistical models to predict monthly streamflow from physical catchment features and evaluate how flow changes with incremental changes in precipitation and temperature. The results indicate unique regional and monthly flow responses to climate change, with early summer flows (May–July) in interior mountain region having the greatest sensitivity to temperature and winter flows (December–March) in the xeric region having the greatest sensitivity to precipitation. When evaluated over the range of global climate model projections for mid-century (2040–2069), models generally suggest shifts in streamflow regimes towards higher wet season flows and lower dry season flows relative to historical conditions. The sensitivity analysis provides insight into catchment- and regional-scale hydrologic responses in California and complements other approaches for understanding the consequences of climatic change for water and risk management.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10584-018-2244-9</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-0009
ispartof Climatic change, 2018-08, Vol.149 (3-4), p.427-441
issn 0165-0009
1573-1480
language eng
recordid cdi_proquest_journals_2068187785
source PAIS Index; SpringerLink Journals - AutoHoldings
subjects Alternative approaches
Atmospheric Sciences
Catchment area
Climate adaptation
Climate change
Climate Change/Climate Change Impacts
Climate models
Climate prediction
Climate variability
Dry season
Earth and Environmental Science
Earth Sciences
Environmental assessment
Environmental risk
Future climates
Future precipitation
Global climate
Global climate models
Hydrologic cycle
Hydrologic models
Hydrological cycle
Hydrology
Mathematical models
Mountain regions
Precipitation
Rainy season
Regional development
Regions
Risk management
Sensitivity analysis
Statistical analysis
Statistical models
Stream discharge
Stream flow
Temperature
Uncertainty
Water conveyance
Water resources management
Water supply
Wet season
title Sensitivity of streamflow to climate change in California
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A29%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20of%20streamflow%20to%20climate%20change%20in%20California&rft.jtitle=Climatic%20change&rft.au=Grantham,%20Theodore%20E.%20W.&rft.date=2018-08-01&rft.volume=149&rft.issue=3-4&rft.spage=427&rft.epage=441&rft.pages=427-441&rft.issn=0165-0009&rft.eissn=1573-1480&rft_id=info:doi/10.1007/s10584-018-2244-9&rft_dat=%3Cproquest_cross%3E2068187785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068187785&rft_id=info:pmid/&rfr_iscdi=true