Insurance loss coverage and demand elasticities
Restrictions on insurance risk classification may induce adverse selection, which is usually perceived as a bad outcome. We suggest a counter-argument to this perception in circumstances where modest levels of adverse selection lead to an increase in ‘loss coverage’, defined as expected losses compe...
Gespeichert in:
Veröffentlicht in: | Insurance, mathematics & economics mathematics & economics, 2018-03, Vol.79, p.15-25 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | |
container_start_page | 15 |
container_title | Insurance, mathematics & economics |
container_volume | 79 |
creator | Hao, MingJie Macdonald, Angus S. Tapadar, Pradip Thomas, R. Guy |
description | Restrictions on insurance risk classification may induce adverse selection, which is usually perceived as a bad outcome. We suggest a counter-argument to this perception in circumstances where modest levels of adverse selection lead to an increase in ‘loss coverage’, defined as expected losses compensated by insurance for the whole population. This happens if the shift in coverage towards higher risks under adverse selection more than offsets the fall in number of individuals insured. The possibility of this outcome depends on insurance demand elasticities for higher and lower risks. We state elasticity conditions which ensure that for any downward-sloping insurance demand functions, loss coverage when all risks are pooled at a common price is higher than under fully risk-differentiated prices. Empirical evidence suggests that these conditions may be realistic for some insurance markets. |
doi_str_mv | 10.1016/j.insmatheco.2017.12.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2068023034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668716305327</els_id><sourcerecordid>2068023034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-91825b5eb4bb96defb93d9c1c4e2f95b5e574f88c77b6b903e1d2e9b6ef8bfeb3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwHyJxTmo7iR9HqIBWqsQFzpYfa3DUJsVOKvHvcVQkjpzmsDOzux9CBcEVwYStuir06aDHT7BDRTHhFaEVxvQCLYjgddnKVl6iRbbykjHBr9FNSh3GmEjGF2i17dMUdW-h2A8pFXY4QdQfUOjeFQ4Os8BepzHYMAZIt-jK632Cu19dovfnp7f1pty9vmzXD7vSNoyMpSSCtqYF0xgjmQNvZO2kJbYB6uU8aXnjhbCcG2YkroE4CtIw8MJ4MPUS3Z97j3H4miCNqhum2OeVimImMK1x3WSXOLtszMdH8OoYw0HHb0WwmvGoTv3hUTMeRajKeHL08RyF_MUpQFTJBsgcXIhgR-WG8H_JD_oIc9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068023034</pqid></control><display><type>article</type><title>Insurance loss coverage and demand elasticities</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hao, MingJie ; Macdonald, Angus S. ; Tapadar, Pradip ; Thomas, R. Guy</creator><creatorcontrib>Hao, MingJie ; Macdonald, Angus S. ; Tapadar, Pradip ; Thomas, R. Guy</creatorcontrib><description>Restrictions on insurance risk classification may induce adverse selection, which is usually perceived as a bad outcome. We suggest a counter-argument to this perception in circumstances where modest levels of adverse selection lead to an increase in ‘loss coverage’, defined as expected losses compensated by insurance for the whole population. This happens if the shift in coverage towards higher risks under adverse selection more than offsets the fall in number of individuals insured. The possibility of this outcome depends on insurance demand elasticities for higher and lower risks. We state elasticity conditions which ensure that for any downward-sloping insurance demand functions, loss coverage when all risks are pooled at a common price is higher than under fully risk-differentiated prices. Empirical evidence suggests that these conditions may be realistic for some insurance markets.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2017.12.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adverse selection ; Arc elasticity of demand ; Classification ; Demand ; Economics ; Elasticity ; Elasticity of demand ; Health care ; Heterogeneous risk preferences ; Insurance ; Insurance coverage ; Insurance policies ; Loss coverage ; Markets ; Mathematics ; Offsets ; Prices ; Public health ; Risk management</subject><ispartof>Insurance, mathematics & economics, 2018-03, Vol.79, p.15-25</ispartof><rights>2017 The Authors</rights><rights>Copyright Elsevier Sequoia S.A. Mar 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-91825b5eb4bb96defb93d9c1c4e2f95b5e574f88c77b6b903e1d2e9b6ef8bfeb3</citedby><cites>FETCH-LOGICAL-c461t-91825b5eb4bb96defb93d9c1c4e2f95b5e574f88c77b6b903e1d2e9b6ef8bfeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.insmatheco.2017.12.002$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Hao, MingJie</creatorcontrib><creatorcontrib>Macdonald, Angus S.</creatorcontrib><creatorcontrib>Tapadar, Pradip</creatorcontrib><creatorcontrib>Thomas, R. Guy</creatorcontrib><title>Insurance loss coverage and demand elasticities</title><title>Insurance, mathematics & economics</title><description>Restrictions on insurance risk classification may induce adverse selection, which is usually perceived as a bad outcome. We suggest a counter-argument to this perception in circumstances where modest levels of adverse selection lead to an increase in ‘loss coverage’, defined as expected losses compensated by insurance for the whole population. This happens if the shift in coverage towards higher risks under adverse selection more than offsets the fall in number of individuals insured. The possibility of this outcome depends on insurance demand elasticities for higher and lower risks. We state elasticity conditions which ensure that for any downward-sloping insurance demand functions, loss coverage when all risks are pooled at a common price is higher than under fully risk-differentiated prices. Empirical evidence suggests that these conditions may be realistic for some insurance markets.</description><subject>Adverse selection</subject><subject>Arc elasticity of demand</subject><subject>Classification</subject><subject>Demand</subject><subject>Economics</subject><subject>Elasticity</subject><subject>Elasticity of demand</subject><subject>Health care</subject><subject>Heterogeneous risk preferences</subject><subject>Insurance</subject><subject>Insurance coverage</subject><subject>Insurance policies</subject><subject>Loss coverage</subject><subject>Markets</subject><subject>Mathematics</subject><subject>Offsets</subject><subject>Prices</subject><subject>Public health</subject><subject>Risk management</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwHyJxTmo7iR9HqIBWqsQFzpYfa3DUJsVOKvHvcVQkjpzmsDOzux9CBcEVwYStuir06aDHT7BDRTHhFaEVxvQCLYjgddnKVl6iRbbykjHBr9FNSh3GmEjGF2i17dMUdW-h2A8pFXY4QdQfUOjeFQ4Os8BepzHYMAZIt-jK632Cu19dovfnp7f1pty9vmzXD7vSNoyMpSSCtqYF0xgjmQNvZO2kJbYB6uU8aXnjhbCcG2YkroE4CtIw8MJ4MPUS3Z97j3H4miCNqhum2OeVimImMK1x3WSXOLtszMdH8OoYw0HHb0WwmvGoTv3hUTMeRajKeHL08RyF_MUpQFTJBsgcXIhgR-WG8H_JD_oIc9I</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Hao, MingJie</creator><creator>Macdonald, Angus S.</creator><creator>Tapadar, Pradip</creator><creator>Thomas, R. Guy</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20180301</creationdate><title>Insurance loss coverage and demand elasticities</title><author>Hao, MingJie ; Macdonald, Angus S. ; Tapadar, Pradip ; Thomas, R. Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-91825b5eb4bb96defb93d9c1c4e2f95b5e574f88c77b6b903e1d2e9b6ef8bfeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adverse selection</topic><topic>Arc elasticity of demand</topic><topic>Classification</topic><topic>Demand</topic><topic>Economics</topic><topic>Elasticity</topic><topic>Elasticity of demand</topic><topic>Health care</topic><topic>Heterogeneous risk preferences</topic><topic>Insurance</topic><topic>Insurance coverage</topic><topic>Insurance policies</topic><topic>Loss coverage</topic><topic>Markets</topic><topic>Mathematics</topic><topic>Offsets</topic><topic>Prices</topic><topic>Public health</topic><topic>Risk management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, MingJie</creatorcontrib><creatorcontrib>Macdonald, Angus S.</creatorcontrib><creatorcontrib>Tapadar, Pradip</creatorcontrib><creatorcontrib>Thomas, R. Guy</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics & economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, MingJie</au><au>Macdonald, Angus S.</au><au>Tapadar, Pradip</au><au>Thomas, R. Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insurance loss coverage and demand elasticities</atitle><jtitle>Insurance, mathematics & economics</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>79</volume><spage>15</spage><epage>25</epage><pages>15-25</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><abstract>Restrictions on insurance risk classification may induce adverse selection, which is usually perceived as a bad outcome. We suggest a counter-argument to this perception in circumstances where modest levels of adverse selection lead to an increase in ‘loss coverage’, defined as expected losses compensated by insurance for the whole population. This happens if the shift in coverage towards higher risks under adverse selection more than offsets the fall in number of individuals insured. The possibility of this outcome depends on insurance demand elasticities for higher and lower risks. We state elasticity conditions which ensure that for any downward-sloping insurance demand functions, loss coverage when all risks are pooled at a common price is higher than under fully risk-differentiated prices. Empirical evidence suggests that these conditions may be realistic for some insurance markets.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2017.12.002</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6687 |
ispartof | Insurance, mathematics & economics, 2018-03, Vol.79, p.15-25 |
issn | 0167-6687 1873-5959 |
language | eng |
recordid | cdi_proquest_journals_2068023034 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Adverse selection Arc elasticity of demand Classification Demand Economics Elasticity Elasticity of demand Health care Heterogeneous risk preferences Insurance Insurance coverage Insurance policies Loss coverage Markets Mathematics Offsets Prices Public health Risk management |
title | Insurance loss coverage and demand elasticities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insurance%20loss%20coverage%20and%20demand%20elasticities&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Hao,%20MingJie&rft.date=2018-03-01&rft.volume=79&rft.spage=15&rft.epage=25&rft.pages=15-25&rft.issn=0167-6687&rft.eissn=1873-5959&rft_id=info:doi/10.1016/j.insmatheco.2017.12.002&rft_dat=%3Cproquest_cross%3E2068023034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068023034&rft_id=info:pmid/&rft_els_id=S0167668716305327&rfr_iscdi=true |