Insurance loss coverage and demand elasticities

Restrictions on insurance risk classification may induce adverse selection, which is usually perceived as a bad outcome. We suggest a counter-argument to this perception in circumstances where modest levels of adverse selection lead to an increase in ‘loss coverage’, defined as expected losses compe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insurance, mathematics & economics mathematics & economics, 2018-03, Vol.79, p.15-25
Hauptverfasser: Hao, MingJie, Macdonald, Angus S., Tapadar, Pradip, Thomas, R. Guy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue
container_start_page 15
container_title Insurance, mathematics & economics
container_volume 79
creator Hao, MingJie
Macdonald, Angus S.
Tapadar, Pradip
Thomas, R. Guy
description Restrictions on insurance risk classification may induce adverse selection, which is usually perceived as a bad outcome. We suggest a counter-argument to this perception in circumstances where modest levels of adverse selection lead to an increase in ‘loss coverage’, defined as expected losses compensated by insurance for the whole population. This happens if the shift in coverage towards higher risks under adverse selection more than offsets the fall in number of individuals insured. The possibility of this outcome depends on insurance demand elasticities for higher and lower risks. We state elasticity conditions which ensure that for any downward-sloping insurance demand functions, loss coverage when all risks are pooled at a common price is higher than under fully risk-differentiated prices. Empirical evidence suggests that these conditions may be realistic for some insurance markets.
doi_str_mv 10.1016/j.insmatheco.2017.12.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2068023034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668716305327</els_id><sourcerecordid>2068023034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-91825b5eb4bb96defb93d9c1c4e2f95b5e574f88c77b6b903e1d2e9b6ef8bfeb3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwHyJxTmo7iR9HqIBWqsQFzpYfa3DUJsVOKvHvcVQkjpzmsDOzux9CBcEVwYStuir06aDHT7BDRTHhFaEVxvQCLYjgddnKVl6iRbbykjHBr9FNSh3GmEjGF2i17dMUdW-h2A8pFXY4QdQfUOjeFQ4Os8BepzHYMAZIt-jK632Cu19dovfnp7f1pty9vmzXD7vSNoyMpSSCtqYF0xgjmQNvZO2kJbYB6uU8aXnjhbCcG2YkroE4CtIw8MJ4MPUS3Z97j3H4miCNqhum2OeVimImMK1x3WSXOLtszMdH8OoYw0HHb0WwmvGoTv3hUTMeRajKeHL08RyF_MUpQFTJBsgcXIhgR-WG8H_JD_oIc9I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068023034</pqid></control><display><type>article</type><title>Insurance loss coverage and demand elasticities</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Hao, MingJie ; Macdonald, Angus S. ; Tapadar, Pradip ; Thomas, R. Guy</creator><creatorcontrib>Hao, MingJie ; Macdonald, Angus S. ; Tapadar, Pradip ; Thomas, R. Guy</creatorcontrib><description>Restrictions on insurance risk classification may induce adverse selection, which is usually perceived as a bad outcome. We suggest a counter-argument to this perception in circumstances where modest levels of adverse selection lead to an increase in ‘loss coverage’, defined as expected losses compensated by insurance for the whole population. This happens if the shift in coverage towards higher risks under adverse selection more than offsets the fall in number of individuals insured. The possibility of this outcome depends on insurance demand elasticities for higher and lower risks. We state elasticity conditions which ensure that for any downward-sloping insurance demand functions, loss coverage when all risks are pooled at a common price is higher than under fully risk-differentiated prices. Empirical evidence suggests that these conditions may be realistic for some insurance markets.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2017.12.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adverse selection ; Arc elasticity of demand ; Classification ; Demand ; Economics ; Elasticity ; Elasticity of demand ; Health care ; Heterogeneous risk preferences ; Insurance ; Insurance coverage ; Insurance policies ; Loss coverage ; Markets ; Mathematics ; Offsets ; Prices ; Public health ; Risk management</subject><ispartof>Insurance, mathematics &amp; economics, 2018-03, Vol.79, p.15-25</ispartof><rights>2017 The Authors</rights><rights>Copyright Elsevier Sequoia S.A. Mar 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-91825b5eb4bb96defb93d9c1c4e2f95b5e574f88c77b6b903e1d2e9b6ef8bfeb3</citedby><cites>FETCH-LOGICAL-c461t-91825b5eb4bb96defb93d9c1c4e2f95b5e574f88c77b6b903e1d2e9b6ef8bfeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.insmatheco.2017.12.002$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Hao, MingJie</creatorcontrib><creatorcontrib>Macdonald, Angus S.</creatorcontrib><creatorcontrib>Tapadar, Pradip</creatorcontrib><creatorcontrib>Thomas, R. Guy</creatorcontrib><title>Insurance loss coverage and demand elasticities</title><title>Insurance, mathematics &amp; economics</title><description>Restrictions on insurance risk classification may induce adverse selection, which is usually perceived as a bad outcome. We suggest a counter-argument to this perception in circumstances where modest levels of adverse selection lead to an increase in ‘loss coverage’, defined as expected losses compensated by insurance for the whole population. This happens if the shift in coverage towards higher risks under adverse selection more than offsets the fall in number of individuals insured. The possibility of this outcome depends on insurance demand elasticities for higher and lower risks. We state elasticity conditions which ensure that for any downward-sloping insurance demand functions, loss coverage when all risks are pooled at a common price is higher than under fully risk-differentiated prices. Empirical evidence suggests that these conditions may be realistic for some insurance markets.</description><subject>Adverse selection</subject><subject>Arc elasticity of demand</subject><subject>Classification</subject><subject>Demand</subject><subject>Economics</subject><subject>Elasticity</subject><subject>Elasticity of demand</subject><subject>Health care</subject><subject>Heterogeneous risk preferences</subject><subject>Insurance</subject><subject>Insurance coverage</subject><subject>Insurance policies</subject><subject>Loss coverage</subject><subject>Markets</subject><subject>Mathematics</subject><subject>Offsets</subject><subject>Prices</subject><subject>Public health</subject><subject>Risk management</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwHyJxTmo7iR9HqIBWqsQFzpYfa3DUJsVOKvHvcVQkjpzmsDOzux9CBcEVwYStuir06aDHT7BDRTHhFaEVxvQCLYjgddnKVl6iRbbykjHBr9FNSh3GmEjGF2i17dMUdW-h2A8pFXY4QdQfUOjeFQ4Os8BepzHYMAZIt-jK632Cu19dovfnp7f1pty9vmzXD7vSNoyMpSSCtqYF0xgjmQNvZO2kJbYB6uU8aXnjhbCcG2YkroE4CtIw8MJ4MPUS3Z97j3H4miCNqhum2OeVimImMK1x3WSXOLtszMdH8OoYw0HHb0WwmvGoTv3hUTMeRajKeHL08RyF_MUpQFTJBsgcXIhgR-WG8H_JD_oIc9I</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Hao, MingJie</creator><creator>Macdonald, Angus S.</creator><creator>Tapadar, Pradip</creator><creator>Thomas, R. Guy</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20180301</creationdate><title>Insurance loss coverage and demand elasticities</title><author>Hao, MingJie ; Macdonald, Angus S. ; Tapadar, Pradip ; Thomas, R. Guy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-91825b5eb4bb96defb93d9c1c4e2f95b5e574f88c77b6b903e1d2e9b6ef8bfeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adverse selection</topic><topic>Arc elasticity of demand</topic><topic>Classification</topic><topic>Demand</topic><topic>Economics</topic><topic>Elasticity</topic><topic>Elasticity of demand</topic><topic>Health care</topic><topic>Heterogeneous risk preferences</topic><topic>Insurance</topic><topic>Insurance coverage</topic><topic>Insurance policies</topic><topic>Loss coverage</topic><topic>Markets</topic><topic>Mathematics</topic><topic>Offsets</topic><topic>Prices</topic><topic>Public health</topic><topic>Risk management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, MingJie</creatorcontrib><creatorcontrib>Macdonald, Angus S.</creatorcontrib><creatorcontrib>Tapadar, Pradip</creatorcontrib><creatorcontrib>Thomas, R. Guy</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, MingJie</au><au>Macdonald, Angus S.</au><au>Tapadar, Pradip</au><au>Thomas, R. Guy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insurance loss coverage and demand elasticities</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>79</volume><spage>15</spage><epage>25</epage><pages>15-25</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><abstract>Restrictions on insurance risk classification may induce adverse selection, which is usually perceived as a bad outcome. We suggest a counter-argument to this perception in circumstances where modest levels of adverse selection lead to an increase in ‘loss coverage’, defined as expected losses compensated by insurance for the whole population. This happens if the shift in coverage towards higher risks under adverse selection more than offsets the fall in number of individuals insured. The possibility of this outcome depends on insurance demand elasticities for higher and lower risks. We state elasticity conditions which ensure that for any downward-sloping insurance demand functions, loss coverage when all risks are pooled at a common price is higher than under fully risk-differentiated prices. Empirical evidence suggests that these conditions may be realistic for some insurance markets.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2017.12.002</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 2018-03, Vol.79, p.15-25
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_journals_2068023034
source ScienceDirect Journals (5 years ago - present)
subjects Adverse selection
Arc elasticity of demand
Classification
Demand
Economics
Elasticity
Elasticity of demand
Health care
Heterogeneous risk preferences
Insurance
Insurance coverage
Insurance policies
Loss coverage
Markets
Mathematics
Offsets
Prices
Public health
Risk management
title Insurance loss coverage and demand elasticities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insurance%20loss%20coverage%20and%20demand%20elasticities&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Hao,%20MingJie&rft.date=2018-03-01&rft.volume=79&rft.spage=15&rft.epage=25&rft.pages=15-25&rft.issn=0167-6687&rft.eissn=1873-5959&rft_id=info:doi/10.1016/j.insmatheco.2017.12.002&rft_dat=%3Cproquest_cross%3E2068023034%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068023034&rft_id=info:pmid/&rft_els_id=S0167668716305327&rfr_iscdi=true