Acoustic and Microseismic Characterization in Steep Bedrock Permafrost on Matterhorn (CH)
Understanding of processes and factors influencing slope stability is essential for assessing the stability of potentially hazardous slopes. Passive monitoring of acoustic emissions and microseismology provides subsurface information on fracturing (timing and identification of the mechanism) and the...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Earth surface 2018-06, Vol.123 (6), p.1363-1385 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1385 |
---|---|
container_issue | 6 |
container_start_page | 1363 |
container_title | Journal of geophysical research. Earth surface |
container_volume | 123 |
creator | Weber, Samuel Faillettaz, Jérome Meyer, Matthias Beutel, Jan Vieli, Andreas |
description | Understanding of processes and factors influencing slope stability is essential for assessing the stability of potentially hazardous slopes. Passive monitoring of acoustic emissions and microseismology provides subsurface information on fracturing (timing and identification of the mechanism) and therefore complement surface displacement data. This study investigates for the first time acoustic and microseismic signals generated in steep, fractured bedrock permafrost, covering the broad frequency range of 1 − 105 Hz. The analysis of artificial forcing experiments using a rebound hammer in a controlled setting led to two major findings: First, statistically insignificant cross correlation between signals indicates that waveforms change strongly with propagation distance. Second, a significant amplification is found in the frequency band 33–67 Hz. This finding is strongly supported by evidence from artificial rockfall events and more importantly by naturally occurring fracture events identified in fracture displacement data. Thus, filtering this frequency band enables enhanced detection of microseismic events relevant for slope stability assessment. The analysis of 2‐year time series in this frequency band further suggests that the detected energy rate baseline of all automatically triggered events using the STA/LTA algorithm is not sensitive to temperature forcing, an observation of primary importance for long‐term data collection, analysis, and interpretation. The event detection in the established frequency band is not only improved but also not affected by the short‐ and long‐term temperature changes in such a rapidly changing environment.
Key Points
Over 2 years of acoustic and microseismic activity in the range of 1 − 105 Hz has been acquired in steep, fractured bedrock permafrost
Observed waveform characteristics strongly depend on propagation distance and thus do not allow feature detection by cross correlation
An amplification between 33 and 67 Hz was observed and allows improved detection of fracture events in this frequency band |
doi_str_mv | 10.1029/2018JF004615 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2068018511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2068018511</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4349-9d10653f2b410689211aebb74acff35ba87efb34a1d5ba7e08cfe5d15c0c77943</originalsourceid><addsrcrecordid>eNp9kMtOAyEUhonRxKZ25wOQuNHEKgeYzsyyTmyraaPxsnBFGAZSajtUoDH16aWpMa5kcy5854fzI3QK5AoILa8pgeJ-RAgfQHaAOhQGZb8kAIe_OWHHqBfCgqRTpBbQDnobKrcJ0Sos2wbPrPIuaBtWqVHNpZcqam-_ZLSuxbbFz1HrNb7RjXfqHT9qv5ImTUScrmcyJnjufIvPq8nFCToychl07yd20evo9qWa9KcP47tqOO1Lznj6VgNkkDFDa56SoqQAUtd1zqUyhmW1LHJtasYlNKnINSmU0VkDmSIqz0vOuuhsr7v27mOjQxQLt_FtelLQJJhcyQASdbmndgsGr41Ye7uSfiuAiJ1_4q9_CWd7_NMu9fZfVtyPn0aUFLxk34dUcIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068018511</pqid></control><display><type>article</type><title>Acoustic and Microseismic Characterization in Steep Bedrock Permafrost on Matterhorn (CH)</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Weber, Samuel ; Faillettaz, Jérome ; Meyer, Matthias ; Beutel, Jan ; Vieli, Andreas</creator><creatorcontrib>Weber, Samuel ; Faillettaz, Jérome ; Meyer, Matthias ; Beutel, Jan ; Vieli, Andreas</creatorcontrib><description>Understanding of processes and factors influencing slope stability is essential for assessing the stability of potentially hazardous slopes. Passive monitoring of acoustic emissions and microseismology provides subsurface information on fracturing (timing and identification of the mechanism) and therefore complement surface displacement data. This study investigates for the first time acoustic and microseismic signals generated in steep, fractured bedrock permafrost, covering the broad frequency range of 1 − 105 Hz. The analysis of artificial forcing experiments using a rebound hammer in a controlled setting led to two major findings: First, statistically insignificant cross correlation between signals indicates that waveforms change strongly with propagation distance. Second, a significant amplification is found in the frequency band 33–67 Hz. This finding is strongly supported by evidence from artificial rockfall events and more importantly by naturally occurring fracture events identified in fracture displacement data. Thus, filtering this frequency band enables enhanced detection of microseismic events relevant for slope stability assessment. The analysis of 2‐year time series in this frequency band further suggests that the detected energy rate baseline of all automatically triggered events using the STA/LTA algorithm is not sensitive to temperature forcing, an observation of primary importance for long‐term data collection, analysis, and interpretation. The event detection in the established frequency band is not only improved but also not affected by the short‐ and long‐term temperature changes in such a rapidly changing environment.
Key Points
Over 2 years of acoustic and microseismic activity in the range of 1 − 105 Hz has been acquired in steep, fractured bedrock permafrost
Observed waveform characteristics strongly depend on propagation distance and thus do not allow feature detection by cross correlation
An amplification between 33 and 67 Hz was observed and allows improved detection of fracture events in this frequency band</description><identifier>ISSN: 2169-9003</identifier><identifier>EISSN: 2169-9011</identifier><identifier>DOI: 10.1029/2018JF004615</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Acoustic emission ; acoustic emission and microseismic signals ; Acoustic emission testing ; Acoustics ; Bedrock ; Cross correlation ; Data ; Data collection ; Data processing ; Detection ; Displacement ; Environmental changes ; Filtration ; Fractures ; high mountain ; Mathematical models ; Microseisms ; Permafrost ; Pollution monitoring ; Rock falls ; rock fracturing ; Rockfall ; Seismic activity ; Slope ; Slope stability ; Slopes ; Stability analysis ; steep bedrock permafrost ; surface displacement measurements ; Temperature ; Temperature changes ; Wave propagation ; Waveforms</subject><ispartof>Journal of geophysical research. Earth surface, 2018-06, Vol.123 (6), p.1363-1385</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4349-9d10653f2b410689211aebb74acff35ba87efb34a1d5ba7e08cfe5d15c0c77943</citedby><cites>FETCH-LOGICAL-a4349-9d10653f2b410689211aebb74acff35ba87efb34a1d5ba7e08cfe5d15c0c77943</cites><orcidid>0000-0003-0879-2455 ; 0000-0002-2870-5921 ; 0000-0001-6895-2823 ; 0000-0003-0720-5378</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018JF004615$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018JF004615$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Weber, Samuel</creatorcontrib><creatorcontrib>Faillettaz, Jérome</creatorcontrib><creatorcontrib>Meyer, Matthias</creatorcontrib><creatorcontrib>Beutel, Jan</creatorcontrib><creatorcontrib>Vieli, Andreas</creatorcontrib><title>Acoustic and Microseismic Characterization in Steep Bedrock Permafrost on Matterhorn (CH)</title><title>Journal of geophysical research. Earth surface</title><description>Understanding of processes and factors influencing slope stability is essential for assessing the stability of potentially hazardous slopes. Passive monitoring of acoustic emissions and microseismology provides subsurface information on fracturing (timing and identification of the mechanism) and therefore complement surface displacement data. This study investigates for the first time acoustic and microseismic signals generated in steep, fractured bedrock permafrost, covering the broad frequency range of 1 − 105 Hz. The analysis of artificial forcing experiments using a rebound hammer in a controlled setting led to two major findings: First, statistically insignificant cross correlation between signals indicates that waveforms change strongly with propagation distance. Second, a significant amplification is found in the frequency band 33–67 Hz. This finding is strongly supported by evidence from artificial rockfall events and more importantly by naturally occurring fracture events identified in fracture displacement data. Thus, filtering this frequency band enables enhanced detection of microseismic events relevant for slope stability assessment. The analysis of 2‐year time series in this frequency band further suggests that the detected energy rate baseline of all automatically triggered events using the STA/LTA algorithm is not sensitive to temperature forcing, an observation of primary importance for long‐term data collection, analysis, and interpretation. The event detection in the established frequency band is not only improved but also not affected by the short‐ and long‐term temperature changes in such a rapidly changing environment.
Key Points
Over 2 years of acoustic and microseismic activity in the range of 1 − 105 Hz has been acquired in steep, fractured bedrock permafrost
Observed waveform characteristics strongly depend on propagation distance and thus do not allow feature detection by cross correlation
An amplification between 33 and 67 Hz was observed and allows improved detection of fracture events in this frequency band</description><subject>Acoustic emission</subject><subject>acoustic emission and microseismic signals</subject><subject>Acoustic emission testing</subject><subject>Acoustics</subject><subject>Bedrock</subject><subject>Cross correlation</subject><subject>Data</subject><subject>Data collection</subject><subject>Data processing</subject><subject>Detection</subject><subject>Displacement</subject><subject>Environmental changes</subject><subject>Filtration</subject><subject>Fractures</subject><subject>high mountain</subject><subject>Mathematical models</subject><subject>Microseisms</subject><subject>Permafrost</subject><subject>Pollution monitoring</subject><subject>Rock falls</subject><subject>rock fracturing</subject><subject>Rockfall</subject><subject>Seismic activity</subject><subject>Slope</subject><subject>Slope stability</subject><subject>Slopes</subject><subject>Stability analysis</subject><subject>steep bedrock permafrost</subject><subject>surface displacement measurements</subject><subject>Temperature</subject><subject>Temperature changes</subject><subject>Wave propagation</subject><subject>Waveforms</subject><issn>2169-9003</issn><issn>2169-9011</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAyEUhonRxKZ25wOQuNHEKgeYzsyyTmyraaPxsnBFGAZSajtUoDH16aWpMa5kcy5854fzI3QK5AoILa8pgeJ-RAgfQHaAOhQGZb8kAIe_OWHHqBfCgqRTpBbQDnobKrcJ0Sos2wbPrPIuaBtWqVHNpZcqam-_ZLSuxbbFz1HrNb7RjXfqHT9qv5ImTUScrmcyJnjufIvPq8nFCToychl07yd20evo9qWa9KcP47tqOO1Lznj6VgNkkDFDa56SoqQAUtd1zqUyhmW1LHJtasYlNKnINSmU0VkDmSIqz0vOuuhsr7v27mOjQxQLt_FtelLQJJhcyQASdbmndgsGr41Ye7uSfiuAiJ1_4q9_CWd7_NMu9fZfVtyPn0aUFLxk34dUcIE</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Weber, Samuel</creator><creator>Faillettaz, Jérome</creator><creator>Meyer, Matthias</creator><creator>Beutel, Jan</creator><creator>Vieli, Andreas</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0879-2455</orcidid><orcidid>https://orcid.org/0000-0002-2870-5921</orcidid><orcidid>https://orcid.org/0000-0001-6895-2823</orcidid><orcidid>https://orcid.org/0000-0003-0720-5378</orcidid></search><sort><creationdate>201806</creationdate><title>Acoustic and Microseismic Characterization in Steep Bedrock Permafrost on Matterhorn (CH)</title><author>Weber, Samuel ; Faillettaz, Jérome ; Meyer, Matthias ; Beutel, Jan ; Vieli, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4349-9d10653f2b410689211aebb74acff35ba87efb34a1d5ba7e08cfe5d15c0c77943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustic emission</topic><topic>acoustic emission and microseismic signals</topic><topic>Acoustic emission testing</topic><topic>Acoustics</topic><topic>Bedrock</topic><topic>Cross correlation</topic><topic>Data</topic><topic>Data collection</topic><topic>Data processing</topic><topic>Detection</topic><topic>Displacement</topic><topic>Environmental changes</topic><topic>Filtration</topic><topic>Fractures</topic><topic>high mountain</topic><topic>Mathematical models</topic><topic>Microseisms</topic><topic>Permafrost</topic><topic>Pollution monitoring</topic><topic>Rock falls</topic><topic>rock fracturing</topic><topic>Rockfall</topic><topic>Seismic activity</topic><topic>Slope</topic><topic>Slope stability</topic><topic>Slopes</topic><topic>Stability analysis</topic><topic>steep bedrock permafrost</topic><topic>surface displacement measurements</topic><topic>Temperature</topic><topic>Temperature changes</topic><topic>Wave propagation</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, Samuel</creatorcontrib><creatorcontrib>Faillettaz, Jérome</creatorcontrib><creatorcontrib>Meyer, Matthias</creatorcontrib><creatorcontrib>Beutel, Jan</creatorcontrib><creatorcontrib>Vieli, Andreas</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of geophysical research. Earth surface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, Samuel</au><au>Faillettaz, Jérome</au><au>Meyer, Matthias</au><au>Beutel, Jan</au><au>Vieli, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic and Microseismic Characterization in Steep Bedrock Permafrost on Matterhorn (CH)</atitle><jtitle>Journal of geophysical research. Earth surface</jtitle><date>2018-06</date><risdate>2018</risdate><volume>123</volume><issue>6</issue><spage>1363</spage><epage>1385</epage><pages>1363-1385</pages><issn>2169-9003</issn><eissn>2169-9011</eissn><abstract>Understanding of processes and factors influencing slope stability is essential for assessing the stability of potentially hazardous slopes. Passive monitoring of acoustic emissions and microseismology provides subsurface information on fracturing (timing and identification of the mechanism) and therefore complement surface displacement data. This study investigates for the first time acoustic and microseismic signals generated in steep, fractured bedrock permafrost, covering the broad frequency range of 1 − 105 Hz. The analysis of artificial forcing experiments using a rebound hammer in a controlled setting led to two major findings: First, statistically insignificant cross correlation between signals indicates that waveforms change strongly with propagation distance. Second, a significant amplification is found in the frequency band 33–67 Hz. This finding is strongly supported by evidence from artificial rockfall events and more importantly by naturally occurring fracture events identified in fracture displacement data. Thus, filtering this frequency band enables enhanced detection of microseismic events relevant for slope stability assessment. The analysis of 2‐year time series in this frequency band further suggests that the detected energy rate baseline of all automatically triggered events using the STA/LTA algorithm is not sensitive to temperature forcing, an observation of primary importance for long‐term data collection, analysis, and interpretation. The event detection in the established frequency band is not only improved but also not affected by the short‐ and long‐term temperature changes in such a rapidly changing environment.
Key Points
Over 2 years of acoustic and microseismic activity in the range of 1 − 105 Hz has been acquired in steep, fractured bedrock permafrost
Observed waveform characteristics strongly depend on propagation distance and thus do not allow feature detection by cross correlation
An amplification between 33 and 67 Hz was observed and allows improved detection of fracture events in this frequency band</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2018JF004615</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0879-2455</orcidid><orcidid>https://orcid.org/0000-0002-2870-5921</orcidid><orcidid>https://orcid.org/0000-0001-6895-2823</orcidid><orcidid>https://orcid.org/0000-0003-0720-5378</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9003 |
ispartof | Journal of geophysical research. Earth surface, 2018-06, Vol.123 (6), p.1363-1385 |
issn | 2169-9003 2169-9011 |
language | eng |
recordid | cdi_proquest_journals_2068018511 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete |
subjects | Acoustic emission acoustic emission and microseismic signals Acoustic emission testing Acoustics Bedrock Cross correlation Data Data collection Data processing Detection Displacement Environmental changes Filtration Fractures high mountain Mathematical models Microseisms Permafrost Pollution monitoring Rock falls rock fracturing Rockfall Seismic activity Slope Slope stability Slopes Stability analysis steep bedrock permafrost surface displacement measurements Temperature Temperature changes Wave propagation Waveforms |
title | Acoustic and Microseismic Characterization in Steep Bedrock Permafrost on Matterhorn (CH) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20and%20Microseismic%20Characterization%20in%20Steep%20Bedrock%20Permafrost%20on%20Matterhorn%20(CH)&rft.jtitle=Journal%20of%20geophysical%20research.%20Earth%20surface&rft.au=Weber,%20Samuel&rft.date=2018-06&rft.volume=123&rft.issue=6&rft.spage=1363&rft.epage=1385&rft.pages=1363-1385&rft.issn=2169-9003&rft.eissn=2169-9011&rft_id=info:doi/10.1029/2018JF004615&rft_dat=%3Cproquest_cross%3E2068018511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068018511&rft_id=info:pmid/&rfr_iscdi=true |