Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model
The prediction of tourist numbers is important for Destination Management and Marketing. While most existing methods rely on well-structured statistical data, using web search queries of the destination to forecast its tourist arrivals is a new way to apply Big Data analytics. However, there are no...
Gespeichert in:
Veröffentlicht in: | Technological forecasting & social change 2018-05, Vol.130, p.123-134 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 134 |
---|---|
container_issue | |
container_start_page | 123 |
container_title | Technological forecasting & social change |
container_volume | 130 |
creator | Liu, Yuan-Yuan Tseng, Fang-Mei Tseng, Yi-Heng |
description | The prediction of tourist numbers is important for Destination Management and Marketing. While most existing methods rely on well-structured statistical data, using web search queries of the destination to forecast its tourist arrivals is a new way to apply Big Data analytics. However, there are no studies exploring correlation of weather, temperatures, weekends and public holidays with tourism destination arrivals and web search queries of the destination, respectively. This study uses the Vector Autoregressive modeling to examine the Granger causality between actual arrivals of the studied cultural tourism destination and its web search queries, and to explore the correlation mentioned above. The striking result is that weather has no correlation either with actual arrivals of the studied cultural tourism destination, or with its web search queries. Meanwhile, unlike previous researchers who discuss the predictive power of web queries on actual tourism flows, this study emphasizes their reciprocal predictive powers upon each other. The originality of this study is exemplifying the utilization of Big Data analytics in the tourism domain with Big Data datasets, data capture techniques, analytical tools, and analysis results. This study further digs possible reasons for an identified short time lag length (p = 2), to provide insights for Destination Management and Marketing.
•Finds that weather and temperatures have no correlation with actual arrivals of the destination•Finds that weekends and public holidays have significant correlation with the actual arrivals•Emphasizes the tourism destination arrivals' predictive power on its web search queries•Provides an example of Big Data analytics for Destination Management and Marketing |
doi_str_mv | 10.1016/j.techfore.2018.01.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2068016442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040162518301045</els_id><sourcerecordid>2068016442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-141fc44e7a3080f58fd8adc10d840b633584febfc86ba1db93f1a1fd2e9bb8743</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKdfQQI-d960aZu9OedfGPiivoY0udkyurUm2WTf3pTps3CTEDjncM-PkGsGEwasul1PIuqV7TxOcmBiAiyNOCEjJuoiK0uYnpIRAIeMVXl5Ti5CWANAXYhqRNp7t6QPKiqqtqo9RKcDTVHDQa1CdNsljd3Ou7ChBoe_iq7bUuW926s20G8XVzSukKq-bx0a-ok6poDZLt249BjCoN90BttLcmaTB69-3zH5eHp8n79ki7fn1_lskWmelzFjnFnNOdaqAAG2FNYIZTQDIzg0VVGUgltsrBZVo5hppoVlilmT47RpRM2LMbk55va--9qlreU6VUj9gsyhEgka53lSVUeV9l0IHq3svdsof5AM5EBWruUfWTmQlcDSiGS8Oxoxddg79DJoh1uNxiVoUZrO_RfxAys8iBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068016442</pqid></control><display><type>article</type><title>Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model</title><source>Sociological Abstracts</source><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Yuan-Yuan ; Tseng, Fang-Mei ; Tseng, Yi-Heng</creator><creatorcontrib>Liu, Yuan-Yuan ; Tseng, Fang-Mei ; Tseng, Yi-Heng</creatorcontrib><description>The prediction of tourist numbers is important for Destination Management and Marketing. While most existing methods rely on well-structured statistical data, using web search queries of the destination to forecast its tourist arrivals is a new way to apply Big Data analytics. However, there are no studies exploring correlation of weather, temperatures, weekends and public holidays with tourism destination arrivals and web search queries of the destination, respectively. This study uses the Vector Autoregressive modeling to examine the Granger causality between actual arrivals of the studied cultural tourism destination and its web search queries, and to explore the correlation mentioned above. The striking result is that weather has no correlation either with actual arrivals of the studied cultural tourism destination, or with its web search queries. Meanwhile, unlike previous researchers who discuss the predictive power of web queries on actual tourism flows, this study emphasizes their reciprocal predictive powers upon each other. The originality of this study is exemplifying the utilization of Big Data analytics in the tourism domain with Big Data datasets, data capture techniques, analytical tools, and analysis results. This study further digs possible reasons for an identified short time lag length (p = 2), to provide insights for Destination Management and Marketing.
•Finds that weather and temperatures have no correlation with actual arrivals of the destination•Finds that weekends and public holidays have significant correlation with the actual arrivals•Emphasizes the tourism destination arrivals' predictive power on its web search queries•Provides an example of Big Data analytics for Destination Management and Marketing</description><identifier>ISSN: 0040-1625</identifier><identifier>EISSN: 1873-5509</identifier><identifier>DOI: 10.1016/j.techfore.2018.01.018</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Analytics ; Arrivals ; Autoregressive models ; Big Data ; Big Data analytics ; Correlation analysis ; Cultural tourism ; Data analysis ; Data capture ; Data management ; Destination Management and Marketing ; Forecasting ; Granger causality ; Holidays & special occasions ; Marketing ; Mathematical analysis ; Predictions ; Queries ; Regression analysis ; Searching ; Statistical analysis ; Statistical methods ; Time lag ; Tourism ; Tourist attractions ; Vector Autoregression model ; Weather</subject><ispartof>Technological forecasting & social change, 2018-05, Vol.130, p.123-134</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. May 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-141fc44e7a3080f58fd8adc10d840b633584febfc86ba1db93f1a1fd2e9bb8743</citedby><cites>FETCH-LOGICAL-c425t-141fc44e7a3080f58fd8adc10d840b633584febfc86ba1db93f1a1fd2e9bb8743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.techfore.2018.01.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,33774,45995</link.rule.ids></links><search><creatorcontrib>Liu, Yuan-Yuan</creatorcontrib><creatorcontrib>Tseng, Fang-Mei</creatorcontrib><creatorcontrib>Tseng, Yi-Heng</creatorcontrib><title>Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model</title><title>Technological forecasting & social change</title><description>The prediction of tourist numbers is important for Destination Management and Marketing. While most existing methods rely on well-structured statistical data, using web search queries of the destination to forecast its tourist arrivals is a new way to apply Big Data analytics. However, there are no studies exploring correlation of weather, temperatures, weekends and public holidays with tourism destination arrivals and web search queries of the destination, respectively. This study uses the Vector Autoregressive modeling to examine the Granger causality between actual arrivals of the studied cultural tourism destination and its web search queries, and to explore the correlation mentioned above. The striking result is that weather has no correlation either with actual arrivals of the studied cultural tourism destination, or with its web search queries. Meanwhile, unlike previous researchers who discuss the predictive power of web queries on actual tourism flows, this study emphasizes their reciprocal predictive powers upon each other. The originality of this study is exemplifying the utilization of Big Data analytics in the tourism domain with Big Data datasets, data capture techniques, analytical tools, and analysis results. This study further digs possible reasons for an identified short time lag length (p = 2), to provide insights for Destination Management and Marketing.
•Finds that weather and temperatures have no correlation with actual arrivals of the destination•Finds that weekends and public holidays have significant correlation with the actual arrivals•Emphasizes the tourism destination arrivals' predictive power on its web search queries•Provides an example of Big Data analytics for Destination Management and Marketing</description><subject>Analytics</subject><subject>Arrivals</subject><subject>Autoregressive models</subject><subject>Big Data</subject><subject>Big Data analytics</subject><subject>Correlation analysis</subject><subject>Cultural tourism</subject><subject>Data analysis</subject><subject>Data capture</subject><subject>Data management</subject><subject>Destination Management and Marketing</subject><subject>Forecasting</subject><subject>Granger causality</subject><subject>Holidays & special occasions</subject><subject>Marketing</subject><subject>Mathematical analysis</subject><subject>Predictions</subject><subject>Queries</subject><subject>Regression analysis</subject><subject>Searching</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Time lag</subject><subject>Tourism</subject><subject>Tourist attractions</subject><subject>Vector Autoregression model</subject><subject>Weather</subject><issn>0040-1625</issn><issn>1873-5509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNqFkF9LwzAUxYMoOKdfQQI-d960aZu9OedfGPiivoY0udkyurUm2WTf3pTps3CTEDjncM-PkGsGEwasul1PIuqV7TxOcmBiAiyNOCEjJuoiK0uYnpIRAIeMVXl5Ti5CWANAXYhqRNp7t6QPKiqqtqo9RKcDTVHDQa1CdNsljd3Ou7ChBoe_iq7bUuW926s20G8XVzSukKq-bx0a-ok6poDZLt249BjCoN90BttLcmaTB69-3zH5eHp8n79ki7fn1_lskWmelzFjnFnNOdaqAAG2FNYIZTQDIzg0VVGUgltsrBZVo5hppoVlilmT47RpRM2LMbk55va--9qlreU6VUj9gsyhEgka53lSVUeV9l0IHq3svdsof5AM5EBWruUfWTmQlcDSiGS8Oxoxddg79DJoh1uNxiVoUZrO_RfxAys8iBQ</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Liu, Yuan-Yuan</creator><creator>Tseng, Fang-Mei</creator><creator>Tseng, Yi-Heng</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U4</scope><scope>8FD</scope><scope>BHHNA</scope><scope>DWI</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>WZK</scope></search><sort><creationdate>20180501</creationdate><title>Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model</title><author>Liu, Yuan-Yuan ; Tseng, Fang-Mei ; Tseng, Yi-Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-141fc44e7a3080f58fd8adc10d840b633584febfc86ba1db93f1a1fd2e9bb8743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytics</topic><topic>Arrivals</topic><topic>Autoregressive models</topic><topic>Big Data</topic><topic>Big Data analytics</topic><topic>Correlation analysis</topic><topic>Cultural tourism</topic><topic>Data analysis</topic><topic>Data capture</topic><topic>Data management</topic><topic>Destination Management and Marketing</topic><topic>Forecasting</topic><topic>Granger causality</topic><topic>Holidays & special occasions</topic><topic>Marketing</topic><topic>Mathematical analysis</topic><topic>Predictions</topic><topic>Queries</topic><topic>Regression analysis</topic><topic>Searching</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Time lag</topic><topic>Tourism</topic><topic>Tourist attractions</topic><topic>Vector Autoregression model</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuan-Yuan</creatorcontrib><creatorcontrib>Tseng, Fang-Mei</creatorcontrib><creatorcontrib>Tseng, Yi-Heng</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Technology Research Database</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Technological forecasting & social change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuan-Yuan</au><au>Tseng, Fang-Mei</au><au>Tseng, Yi-Heng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model</atitle><jtitle>Technological forecasting & social change</jtitle><date>2018-05-01</date><risdate>2018</risdate><volume>130</volume><spage>123</spage><epage>134</epage><pages>123-134</pages><issn>0040-1625</issn><eissn>1873-5509</eissn><abstract>The prediction of tourist numbers is important for Destination Management and Marketing. While most existing methods rely on well-structured statistical data, using web search queries of the destination to forecast its tourist arrivals is a new way to apply Big Data analytics. However, there are no studies exploring correlation of weather, temperatures, weekends and public holidays with tourism destination arrivals and web search queries of the destination, respectively. This study uses the Vector Autoregressive modeling to examine the Granger causality between actual arrivals of the studied cultural tourism destination and its web search queries, and to explore the correlation mentioned above. The striking result is that weather has no correlation either with actual arrivals of the studied cultural tourism destination, or with its web search queries. Meanwhile, unlike previous researchers who discuss the predictive power of web queries on actual tourism flows, this study emphasizes their reciprocal predictive powers upon each other. The originality of this study is exemplifying the utilization of Big Data analytics in the tourism domain with Big Data datasets, data capture techniques, analytical tools, and analysis results. This study further digs possible reasons for an identified short time lag length (p = 2), to provide insights for Destination Management and Marketing.
•Finds that weather and temperatures have no correlation with actual arrivals of the destination•Finds that weekends and public holidays have significant correlation with the actual arrivals•Emphasizes the tourism destination arrivals' predictive power on its web search queries•Provides an example of Big Data analytics for Destination Management and Marketing</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.techfore.2018.01.018</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1625 |
ispartof | Technological forecasting & social change, 2018-05, Vol.130, p.123-134 |
issn | 0040-1625 1873-5509 |
language | eng |
recordid | cdi_proquest_journals_2068016442 |
source | Sociological Abstracts; Access via ScienceDirect (Elsevier) |
subjects | Analytics Arrivals Autoregressive models Big Data Big Data analytics Correlation analysis Cultural tourism Data analysis Data capture Data management Destination Management and Marketing Forecasting Granger causality Holidays & special occasions Marketing Mathematical analysis Predictions Queries Regression analysis Searching Statistical analysis Statistical methods Time lag Tourism Tourist attractions Vector Autoregression model Weather |
title | Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Big%20Data%20analytics%20for%20forecasting%20tourism%20destination%20arrivals%20with%20the%20applied%20Vector%20Autoregression%20model&rft.jtitle=Technological%20forecasting%20&%20social%20change&rft.au=Liu,%20Yuan-Yuan&rft.date=2018-05-01&rft.volume=130&rft.spage=123&rft.epage=134&rft.pages=123-134&rft.issn=0040-1625&rft.eissn=1873-5509&rft_id=info:doi/10.1016/j.techfore.2018.01.018&rft_dat=%3Cproquest_cross%3E2068016442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068016442&rft_id=info:pmid/&rft_els_id=S0040162518301045&rfr_iscdi=true |