Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model

The prediction of tourist numbers is important for Destination Management and Marketing. While most existing methods rely on well-structured statistical data, using web search queries of the destination to forecast its tourist arrivals is a new way to apply Big Data analytics. However, there are no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Technological forecasting & social change 2018-05, Vol.130, p.123-134
Hauptverfasser: Liu, Yuan-Yuan, Tseng, Fang-Mei, Tseng, Yi-Heng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 134
container_issue
container_start_page 123
container_title Technological forecasting & social change
container_volume 130
creator Liu, Yuan-Yuan
Tseng, Fang-Mei
Tseng, Yi-Heng
description The prediction of tourist numbers is important for Destination Management and Marketing. While most existing methods rely on well-structured statistical data, using web search queries of the destination to forecast its tourist arrivals is a new way to apply Big Data analytics. However, there are no studies exploring correlation of weather, temperatures, weekends and public holidays with tourism destination arrivals and web search queries of the destination, respectively. This study uses the Vector Autoregressive modeling to examine the Granger causality between actual arrivals of the studied cultural tourism destination and its web search queries, and to explore the correlation mentioned above. The striking result is that weather has no correlation either with actual arrivals of the studied cultural tourism destination, or with its web search queries. Meanwhile, unlike previous researchers who discuss the predictive power of web queries on actual tourism flows, this study emphasizes their reciprocal predictive powers upon each other. The originality of this study is exemplifying the utilization of Big Data analytics in the tourism domain with Big Data datasets, data capture techniques, analytical tools, and analysis results. This study further digs possible reasons for an identified short time lag length (p = 2), to provide insights for Destination Management and Marketing. •Finds that weather and temperatures have no correlation with actual arrivals of the destination•Finds that weekends and public holidays have significant correlation with the actual arrivals•Emphasizes the tourism destination arrivals' predictive power on its web search queries•Provides an example of Big Data analytics for Destination Management and Marketing
doi_str_mv 10.1016/j.techfore.2018.01.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2068016442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0040162518301045</els_id><sourcerecordid>2068016442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-141fc44e7a3080f58fd8adc10d840b633584febfc86ba1db93f1a1fd2e9bb8743</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKdfQQI-d960aZu9OedfGPiivoY0udkyurUm2WTf3pTps3CTEDjncM-PkGsGEwasul1PIuqV7TxOcmBiAiyNOCEjJuoiK0uYnpIRAIeMVXl5Ti5CWANAXYhqRNp7t6QPKiqqtqo9RKcDTVHDQa1CdNsljd3Ou7ChBoe_iq7bUuW926s20G8XVzSukKq-bx0a-ok6poDZLt249BjCoN90BttLcmaTB69-3zH5eHp8n79ki7fn1_lskWmelzFjnFnNOdaqAAG2FNYIZTQDIzg0VVGUgltsrBZVo5hppoVlilmT47RpRM2LMbk55va--9qlreU6VUj9gsyhEgka53lSVUeV9l0IHq3svdsof5AM5EBWruUfWTmQlcDSiGS8Oxoxddg79DJoh1uNxiVoUZrO_RfxAys8iBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068016442</pqid></control><display><type>article</type><title>Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model</title><source>Sociological Abstracts</source><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Yuan-Yuan ; Tseng, Fang-Mei ; Tseng, Yi-Heng</creator><creatorcontrib>Liu, Yuan-Yuan ; Tseng, Fang-Mei ; Tseng, Yi-Heng</creatorcontrib><description>The prediction of tourist numbers is important for Destination Management and Marketing. While most existing methods rely on well-structured statistical data, using web search queries of the destination to forecast its tourist arrivals is a new way to apply Big Data analytics. However, there are no studies exploring correlation of weather, temperatures, weekends and public holidays with tourism destination arrivals and web search queries of the destination, respectively. This study uses the Vector Autoregressive modeling to examine the Granger causality between actual arrivals of the studied cultural tourism destination and its web search queries, and to explore the correlation mentioned above. The striking result is that weather has no correlation either with actual arrivals of the studied cultural tourism destination, or with its web search queries. Meanwhile, unlike previous researchers who discuss the predictive power of web queries on actual tourism flows, this study emphasizes their reciprocal predictive powers upon each other. The originality of this study is exemplifying the utilization of Big Data analytics in the tourism domain with Big Data datasets, data capture techniques, analytical tools, and analysis results. This study further digs possible reasons for an identified short time lag length (p = 2), to provide insights for Destination Management and Marketing. •Finds that weather and temperatures have no correlation with actual arrivals of the destination•Finds that weekends and public holidays have significant correlation with the actual arrivals•Emphasizes the tourism destination arrivals' predictive power on its web search queries•Provides an example of Big Data analytics for Destination Management and Marketing</description><identifier>ISSN: 0040-1625</identifier><identifier>EISSN: 1873-5509</identifier><identifier>DOI: 10.1016/j.techfore.2018.01.018</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Analytics ; Arrivals ; Autoregressive models ; Big Data ; Big Data analytics ; Correlation analysis ; Cultural tourism ; Data analysis ; Data capture ; Data management ; Destination Management and Marketing ; Forecasting ; Granger causality ; Holidays &amp; special occasions ; Marketing ; Mathematical analysis ; Predictions ; Queries ; Regression analysis ; Searching ; Statistical analysis ; Statistical methods ; Time lag ; Tourism ; Tourist attractions ; Vector Autoregression model ; Weather</subject><ispartof>Technological forecasting &amp; social change, 2018-05, Vol.130, p.123-134</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. May 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-141fc44e7a3080f58fd8adc10d840b633584febfc86ba1db93f1a1fd2e9bb8743</citedby><cites>FETCH-LOGICAL-c425t-141fc44e7a3080f58fd8adc10d840b633584febfc86ba1db93f1a1fd2e9bb8743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.techfore.2018.01.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,33774,45995</link.rule.ids></links><search><creatorcontrib>Liu, Yuan-Yuan</creatorcontrib><creatorcontrib>Tseng, Fang-Mei</creatorcontrib><creatorcontrib>Tseng, Yi-Heng</creatorcontrib><title>Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model</title><title>Technological forecasting &amp; social change</title><description>The prediction of tourist numbers is important for Destination Management and Marketing. While most existing methods rely on well-structured statistical data, using web search queries of the destination to forecast its tourist arrivals is a new way to apply Big Data analytics. However, there are no studies exploring correlation of weather, temperatures, weekends and public holidays with tourism destination arrivals and web search queries of the destination, respectively. This study uses the Vector Autoregressive modeling to examine the Granger causality between actual arrivals of the studied cultural tourism destination and its web search queries, and to explore the correlation mentioned above. The striking result is that weather has no correlation either with actual arrivals of the studied cultural tourism destination, or with its web search queries. Meanwhile, unlike previous researchers who discuss the predictive power of web queries on actual tourism flows, this study emphasizes their reciprocal predictive powers upon each other. The originality of this study is exemplifying the utilization of Big Data analytics in the tourism domain with Big Data datasets, data capture techniques, analytical tools, and analysis results. This study further digs possible reasons for an identified short time lag length (p = 2), to provide insights for Destination Management and Marketing. •Finds that weather and temperatures have no correlation with actual arrivals of the destination•Finds that weekends and public holidays have significant correlation with the actual arrivals•Emphasizes the tourism destination arrivals' predictive power on its web search queries•Provides an example of Big Data analytics for Destination Management and Marketing</description><subject>Analytics</subject><subject>Arrivals</subject><subject>Autoregressive models</subject><subject>Big Data</subject><subject>Big Data analytics</subject><subject>Correlation analysis</subject><subject>Cultural tourism</subject><subject>Data analysis</subject><subject>Data capture</subject><subject>Data management</subject><subject>Destination Management and Marketing</subject><subject>Forecasting</subject><subject>Granger causality</subject><subject>Holidays &amp; special occasions</subject><subject>Marketing</subject><subject>Mathematical analysis</subject><subject>Predictions</subject><subject>Queries</subject><subject>Regression analysis</subject><subject>Searching</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Time lag</subject><subject>Tourism</subject><subject>Tourist attractions</subject><subject>Vector Autoregression model</subject><subject>Weather</subject><issn>0040-1625</issn><issn>1873-5509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNqFkF9LwzAUxYMoOKdfQQI-d960aZu9OedfGPiivoY0udkyurUm2WTf3pTps3CTEDjncM-PkGsGEwasul1PIuqV7TxOcmBiAiyNOCEjJuoiK0uYnpIRAIeMVXl5Ti5CWANAXYhqRNp7t6QPKiqqtqo9RKcDTVHDQa1CdNsljd3Ou7ChBoe_iq7bUuW926s20G8XVzSukKq-bx0a-ok6poDZLt249BjCoN90BttLcmaTB69-3zH5eHp8n79ki7fn1_lskWmelzFjnFnNOdaqAAG2FNYIZTQDIzg0VVGUgltsrBZVo5hppoVlilmT47RpRM2LMbk55va--9qlreU6VUj9gsyhEgka53lSVUeV9l0IHq3svdsof5AM5EBWruUfWTmQlcDSiGS8Oxoxddg79DJoh1uNxiVoUZrO_RfxAys8iBQ</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Liu, Yuan-Yuan</creator><creator>Tseng, Fang-Mei</creator><creator>Tseng, Yi-Heng</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U4</scope><scope>8FD</scope><scope>BHHNA</scope><scope>DWI</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>WZK</scope></search><sort><creationdate>20180501</creationdate><title>Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model</title><author>Liu, Yuan-Yuan ; Tseng, Fang-Mei ; Tseng, Yi-Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-141fc44e7a3080f58fd8adc10d840b633584febfc86ba1db93f1a1fd2e9bb8743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytics</topic><topic>Arrivals</topic><topic>Autoregressive models</topic><topic>Big Data</topic><topic>Big Data analytics</topic><topic>Correlation analysis</topic><topic>Cultural tourism</topic><topic>Data analysis</topic><topic>Data capture</topic><topic>Data management</topic><topic>Destination Management and Marketing</topic><topic>Forecasting</topic><topic>Granger causality</topic><topic>Holidays &amp; special occasions</topic><topic>Marketing</topic><topic>Mathematical analysis</topic><topic>Predictions</topic><topic>Queries</topic><topic>Regression analysis</topic><topic>Searching</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Time lag</topic><topic>Tourism</topic><topic>Tourist attractions</topic><topic>Vector Autoregression model</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuan-Yuan</creatorcontrib><creatorcontrib>Tseng, Fang-Mei</creatorcontrib><creatorcontrib>Tseng, Yi-Heng</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>Technology Research Database</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Sociological Abstracts (Ovid)</collection><jtitle>Technological forecasting &amp; social change</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuan-Yuan</au><au>Tseng, Fang-Mei</au><au>Tseng, Yi-Heng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model</atitle><jtitle>Technological forecasting &amp; social change</jtitle><date>2018-05-01</date><risdate>2018</risdate><volume>130</volume><spage>123</spage><epage>134</epage><pages>123-134</pages><issn>0040-1625</issn><eissn>1873-5509</eissn><abstract>The prediction of tourist numbers is important for Destination Management and Marketing. While most existing methods rely on well-structured statistical data, using web search queries of the destination to forecast its tourist arrivals is a new way to apply Big Data analytics. However, there are no studies exploring correlation of weather, temperatures, weekends and public holidays with tourism destination arrivals and web search queries of the destination, respectively. This study uses the Vector Autoregressive modeling to examine the Granger causality between actual arrivals of the studied cultural tourism destination and its web search queries, and to explore the correlation mentioned above. The striking result is that weather has no correlation either with actual arrivals of the studied cultural tourism destination, or with its web search queries. Meanwhile, unlike previous researchers who discuss the predictive power of web queries on actual tourism flows, this study emphasizes their reciprocal predictive powers upon each other. The originality of this study is exemplifying the utilization of Big Data analytics in the tourism domain with Big Data datasets, data capture techniques, analytical tools, and analysis results. This study further digs possible reasons for an identified short time lag length (p = 2), to provide insights for Destination Management and Marketing. •Finds that weather and temperatures have no correlation with actual arrivals of the destination•Finds that weekends and public holidays have significant correlation with the actual arrivals•Emphasizes the tourism destination arrivals' predictive power on its web search queries•Provides an example of Big Data analytics for Destination Management and Marketing</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.techfore.2018.01.018</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-1625
ispartof Technological forecasting & social change, 2018-05, Vol.130, p.123-134
issn 0040-1625
1873-5509
language eng
recordid cdi_proquest_journals_2068016442
source Sociological Abstracts; Access via ScienceDirect (Elsevier)
subjects Analytics
Arrivals
Autoregressive models
Big Data
Big Data analytics
Correlation analysis
Cultural tourism
Data analysis
Data capture
Data management
Destination Management and Marketing
Forecasting
Granger causality
Holidays & special occasions
Marketing
Mathematical analysis
Predictions
Queries
Regression analysis
Searching
Statistical analysis
Statistical methods
Time lag
Tourism
Tourist attractions
Vector Autoregression model
Weather
title Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Big%20Data%20analytics%20for%20forecasting%20tourism%20destination%20arrivals%20with%20the%20applied%20Vector%20Autoregression%20model&rft.jtitle=Technological%20forecasting%20&%20social%20change&rft.au=Liu,%20Yuan-Yuan&rft.date=2018-05-01&rft.volume=130&rft.spage=123&rft.epage=134&rft.pages=123-134&rft.issn=0040-1625&rft.eissn=1873-5509&rft_id=info:doi/10.1016/j.techfore.2018.01.018&rft_dat=%3Cproquest_cross%3E2068016442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068016442&rft_id=info:pmid/&rft_els_id=S0040162518301045&rfr_iscdi=true