An ensemble approach for in silico prediction of Ames mutagenicity

In this paper, we evaluate three learning algorithms based on supervised projections for molecular activity prediction. Using an approach based on supervised projections of the input space to construct ensembles of classifiers, three algorithms were tested. We constructed the projections by consider...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical chemistry 2018-08, Vol.56 (7), p.2085-2098
Hauptverfasser: Cerruela García, Gonzalo, García-Pedrajas, Nicolás, Luque Ruiz, Irene, Gómez-Nieto, Miguel Ángel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2098
container_issue 7
container_start_page 2085
container_title Journal of mathematical chemistry
container_volume 56
creator Cerruela García, Gonzalo
García-Pedrajas, Nicolás
Luque Ruiz, Irene
Gómez-Nieto, Miguel Ángel
description In this paper, we evaluate three learning algorithms based on supervised projections for molecular activity prediction. Using an approach based on supervised projections of the input space to construct ensembles of classifiers, three algorithms were tested. We constructed the projections by considering only instances that were misclassified by a previous classifier using the hidden layer of an Artificial Neural Network. We applied a supervised linear projection of the input space using a Nonparametric Discriminant Analysis method. Finally, we projected onto a subspace that minimizes the weighted error for each step. Using these three methods to construct ensembles of classifiers for the in silico prediction of Ames mutagenicity, we demonstrated the improved behavior of our proposal compared to classical methods.
doi_str_mv 10.1007/s10910-018-0855-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2067921457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067921457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3e11b68b9442e3d82a8c764450937c3a13f3ac8b24b7289a18be62365b0b029d3</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEiHwAXSWqA0z9u7aLkPES4pEA7VlO97gKPvA3hTJ17PRIlFRTXPuvaNDyC3CPQLIh4ygERigYqDKkh3PyAxLyZlSWp6TGfBSMy01XpKrnLcAoFWlZuRx0dLQ5tC4XaC271Nn_Retu0RjS3PcRd_RPoV19EPsWtrVdNGETJv9YDehjT4Oh2tyUdtdDje_d04-n58-lq9s9f7ytlysmBdYDUwERFcpp4uCB7FW3Covq6IoQQvphUVRC-uV44WTXGmLyoWKi6p04IDrtZiTu6l3fPJ7H_Jgtt0-teOk4VBJzbEo5UjhRPnU5ZxCbfoUG5sOBsGcVJlJlRlVmZMqcxwzfMrkkW03If01_x_6AYVxaxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067921457</pqid></control><display><type>article</type><title>An ensemble approach for in silico prediction of Ames mutagenicity</title><source>Springer Nature - Complete Springer Journals</source><creator>Cerruela García, Gonzalo ; García-Pedrajas, Nicolás ; Luque Ruiz, Irene ; Gómez-Nieto, Miguel Ángel</creator><creatorcontrib>Cerruela García, Gonzalo ; García-Pedrajas, Nicolás ; Luque Ruiz, Irene ; Gómez-Nieto, Miguel Ángel</creatorcontrib><description>In this paper, we evaluate three learning algorithms based on supervised projections for molecular activity prediction. Using an approach based on supervised projections of the input space to construct ensembles of classifiers, three algorithms were tested. We constructed the projections by considering only instances that were misclassified by a previous classifier using the hidden layer of an Artificial Neural Network. We applied a supervised linear projection of the input space using a Nonparametric Discriminant Analysis method. Finally, we projected onto a subspace that minimizes the weighted error for each step. Using these three methods to construct ensembles of classifiers for the in silico prediction of Ames mutagenicity, we demonstrated the improved behavior of our proposal compared to classical methods.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-018-0855-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Artificial neural networks ; Chemistry ; Chemistry and Materials Science ; Classifiers ; Discriminant analysis ; Forecasting ; Machine learning ; Math. Applications in Chemistry ; Molecular chains ; Mutagenicity ; Neural networks ; Original Paper ; Physical Chemistry ; Theoretical and Computational Chemistry</subject><ispartof>Journal of mathematical chemistry, 2018-08, Vol.56 (7), p.2085-2098</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3e11b68b9442e3d82a8c764450937c3a13f3ac8b24b7289a18be62365b0b029d3</citedby><cites>FETCH-LOGICAL-c316t-3e11b68b9442e3d82a8c764450937c3a13f3ac8b24b7289a18be62365b0b029d3</cites><orcidid>0000-0001-9140-3347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10910-018-0855-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10910-018-0855-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cerruela García, Gonzalo</creatorcontrib><creatorcontrib>García-Pedrajas, Nicolás</creatorcontrib><creatorcontrib>Luque Ruiz, Irene</creatorcontrib><creatorcontrib>Gómez-Nieto, Miguel Ángel</creatorcontrib><title>An ensemble approach for in silico prediction of Ames mutagenicity</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>In this paper, we evaluate three learning algorithms based on supervised projections for molecular activity prediction. Using an approach based on supervised projections of the input space to construct ensembles of classifiers, three algorithms were tested. We constructed the projections by considering only instances that were misclassified by a previous classifier using the hidden layer of an Artificial Neural Network. We applied a supervised linear projection of the input space using a Nonparametric Discriminant Analysis method. Finally, we projected onto a subspace that minimizes the weighted error for each step. Using these three methods to construct ensembles of classifiers for the in silico prediction of Ames mutagenicity, we demonstrated the improved behavior of our proposal compared to classical methods.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Classifiers</subject><subject>Discriminant analysis</subject><subject>Forecasting</subject><subject>Machine learning</subject><subject>Math. Applications in Chemistry</subject><subject>Molecular chains</subject><subject>Mutagenicity</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Theoretical and Computational Chemistry</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOAzEQRS0EEiHwAXSWqA0z9u7aLkPES4pEA7VlO97gKPvA3hTJ17PRIlFRTXPuvaNDyC3CPQLIh4ygERigYqDKkh3PyAxLyZlSWp6TGfBSMy01XpKrnLcAoFWlZuRx0dLQ5tC4XaC271Nn_Retu0RjS3PcRd_RPoV19EPsWtrVdNGETJv9YDehjT4Oh2tyUdtdDje_d04-n58-lq9s9f7ytlysmBdYDUwERFcpp4uCB7FW3Covq6IoQQvphUVRC-uV44WTXGmLyoWKi6p04IDrtZiTu6l3fPJ7H_Jgtt0-teOk4VBJzbEo5UjhRPnU5ZxCbfoUG5sOBsGcVJlJlRlVmZMqcxwzfMrkkW03If01_x_6AYVxaxo</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Cerruela García, Gonzalo</creator><creator>García-Pedrajas, Nicolás</creator><creator>Luque Ruiz, Irene</creator><creator>Gómez-Nieto, Miguel Ángel</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9140-3347</orcidid></search><sort><creationdate>20180801</creationdate><title>An ensemble approach for in silico prediction of Ames mutagenicity</title><author>Cerruela García, Gonzalo ; García-Pedrajas, Nicolás ; Luque Ruiz, Irene ; Gómez-Nieto, Miguel Ángel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3e11b68b9442e3d82a8c764450937c3a13f3ac8b24b7289a18be62365b0b029d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Classifiers</topic><topic>Discriminant analysis</topic><topic>Forecasting</topic><topic>Machine learning</topic><topic>Math. Applications in Chemistry</topic><topic>Molecular chains</topic><topic>Mutagenicity</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cerruela García, Gonzalo</creatorcontrib><creatorcontrib>García-Pedrajas, Nicolás</creatorcontrib><creatorcontrib>Luque Ruiz, Irene</creatorcontrib><creatorcontrib>Gómez-Nieto, Miguel Ángel</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cerruela García, Gonzalo</au><au>García-Pedrajas, Nicolás</au><au>Luque Ruiz, Irene</au><au>Gómez-Nieto, Miguel Ángel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ensemble approach for in silico prediction of Ames mutagenicity</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>56</volume><issue>7</issue><spage>2085</spage><epage>2098</epage><pages>2085-2098</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>In this paper, we evaluate three learning algorithms based on supervised projections for molecular activity prediction. Using an approach based on supervised projections of the input space to construct ensembles of classifiers, three algorithms were tested. We constructed the projections by considering only instances that were misclassified by a previous classifier using the hidden layer of an Artificial Neural Network. We applied a supervised linear projection of the input space using a Nonparametric Discriminant Analysis method. Finally, we projected onto a subspace that minimizes the weighted error for each step. Using these three methods to construct ensembles of classifiers for the in silico prediction of Ames mutagenicity, we demonstrated the improved behavior of our proposal compared to classical methods.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-018-0855-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9140-3347</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0259-9791
ispartof Journal of mathematical chemistry, 2018-08, Vol.56 (7), p.2085-2098
issn 0259-9791
1572-8897
language eng
recordid cdi_proquest_journals_2067921457
source Springer Nature - Complete Springer Journals
subjects Algorithms
Artificial neural networks
Chemistry
Chemistry and Materials Science
Classifiers
Discriminant analysis
Forecasting
Machine learning
Math. Applications in Chemistry
Molecular chains
Mutagenicity
Neural networks
Original Paper
Physical Chemistry
Theoretical and Computational Chemistry
title An ensemble approach for in silico prediction of Ames mutagenicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ensemble%20approach%20for%20in%20silico%20prediction%20of%20Ames%20mutagenicity&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Cerruela%20Garc%C3%ADa,%20Gonzalo&rft.date=2018-08-01&rft.volume=56&rft.issue=7&rft.spage=2085&rft.epage=2098&rft.pages=2085-2098&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-018-0855-z&rft_dat=%3Cproquest_cross%3E2067921457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2067921457&rft_id=info:pmid/&rfr_iscdi=true