An ensemble approach for in silico prediction of Ames mutagenicity
In this paper, we evaluate three learning algorithms based on supervised projections for molecular activity prediction. Using an approach based on supervised projections of the input space to construct ensembles of classifiers, three algorithms were tested. We constructed the projections by consider...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical chemistry 2018-08, Vol.56 (7), p.2085-2098 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2098 |
---|---|
container_issue | 7 |
container_start_page | 2085 |
container_title | Journal of mathematical chemistry |
container_volume | 56 |
creator | Cerruela García, Gonzalo García-Pedrajas, Nicolás Luque Ruiz, Irene Gómez-Nieto, Miguel Ángel |
description | In this paper, we evaluate three learning algorithms based on supervised projections for molecular activity prediction. Using an approach based on supervised projections of the input space to construct ensembles of classifiers, three algorithms were tested. We constructed the projections by considering only instances that were misclassified by a previous classifier using the hidden layer of an Artificial Neural Network. We applied a supervised linear projection of the input space using a Nonparametric Discriminant Analysis method. Finally, we projected onto a subspace that minimizes the weighted error for each step. Using these three methods to construct ensembles of classifiers for the in silico prediction of Ames mutagenicity, we demonstrated the improved behavior of our proposal compared to classical methods. |
doi_str_mv | 10.1007/s10910-018-0855-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2067921457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067921457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3e11b68b9442e3d82a8c764450937c3a13f3ac8b24b7289a18be62365b0b029d3</originalsourceid><addsrcrecordid>eNp1kLtOAzEQRS0EEiHwAXSWqA0z9u7aLkPES4pEA7VlO97gKPvA3hTJ17PRIlFRTXPuvaNDyC3CPQLIh4ygERigYqDKkh3PyAxLyZlSWp6TGfBSMy01XpKrnLcAoFWlZuRx0dLQ5tC4XaC271Nn_Retu0RjS3PcRd_RPoV19EPsWtrVdNGETJv9YDehjT4Oh2tyUdtdDje_d04-n58-lq9s9f7ytlysmBdYDUwERFcpp4uCB7FW3Covq6IoQQvphUVRC-uV44WTXGmLyoWKi6p04IDrtZiTu6l3fPJ7H_Jgtt0-teOk4VBJzbEo5UjhRPnU5ZxCbfoUG5sOBsGcVJlJlRlVmZMqcxwzfMrkkW03If01_x_6AYVxaxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067921457</pqid></control><display><type>article</type><title>An ensemble approach for in silico prediction of Ames mutagenicity</title><source>Springer Nature - Complete Springer Journals</source><creator>Cerruela García, Gonzalo ; García-Pedrajas, Nicolás ; Luque Ruiz, Irene ; Gómez-Nieto, Miguel Ángel</creator><creatorcontrib>Cerruela García, Gonzalo ; García-Pedrajas, Nicolás ; Luque Ruiz, Irene ; Gómez-Nieto, Miguel Ángel</creatorcontrib><description>In this paper, we evaluate three learning algorithms based on supervised projections for molecular activity prediction. Using an approach based on supervised projections of the input space to construct ensembles of classifiers, three algorithms were tested. We constructed the projections by considering only instances that were misclassified by a previous classifier using the hidden layer of an Artificial Neural Network. We applied a supervised linear projection of the input space using a Nonparametric Discriminant Analysis method. Finally, we projected onto a subspace that minimizes the weighted error for each step. Using these three methods to construct ensembles of classifiers for the in silico prediction of Ames mutagenicity, we demonstrated the improved behavior of our proposal compared to classical methods.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-018-0855-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Artificial neural networks ; Chemistry ; Chemistry and Materials Science ; Classifiers ; Discriminant analysis ; Forecasting ; Machine learning ; Math. Applications in Chemistry ; Molecular chains ; Mutagenicity ; Neural networks ; Original Paper ; Physical Chemistry ; Theoretical and Computational Chemistry</subject><ispartof>Journal of mathematical chemistry, 2018-08, Vol.56 (7), p.2085-2098</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3e11b68b9442e3d82a8c764450937c3a13f3ac8b24b7289a18be62365b0b029d3</citedby><cites>FETCH-LOGICAL-c316t-3e11b68b9442e3d82a8c764450937c3a13f3ac8b24b7289a18be62365b0b029d3</cites><orcidid>0000-0001-9140-3347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10910-018-0855-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10910-018-0855-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cerruela García, Gonzalo</creatorcontrib><creatorcontrib>García-Pedrajas, Nicolás</creatorcontrib><creatorcontrib>Luque Ruiz, Irene</creatorcontrib><creatorcontrib>Gómez-Nieto, Miguel Ángel</creatorcontrib><title>An ensemble approach for in silico prediction of Ames mutagenicity</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>In this paper, we evaluate three learning algorithms based on supervised projections for molecular activity prediction. Using an approach based on supervised projections of the input space to construct ensembles of classifiers, three algorithms were tested. We constructed the projections by considering only instances that were misclassified by a previous classifier using the hidden layer of an Artificial Neural Network. We applied a supervised linear projection of the input space using a Nonparametric Discriminant Analysis method. Finally, we projected onto a subspace that minimizes the weighted error for each step. Using these three methods to construct ensembles of classifiers for the in silico prediction of Ames mutagenicity, we demonstrated the improved behavior of our proposal compared to classical methods.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Classifiers</subject><subject>Discriminant analysis</subject><subject>Forecasting</subject><subject>Machine learning</subject><subject>Math. Applications in Chemistry</subject><subject>Molecular chains</subject><subject>Mutagenicity</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Theoretical and Computational Chemistry</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOAzEQRS0EEiHwAXSWqA0z9u7aLkPES4pEA7VlO97gKPvA3hTJ17PRIlFRTXPuvaNDyC3CPQLIh4ygERigYqDKkh3PyAxLyZlSWp6TGfBSMy01XpKrnLcAoFWlZuRx0dLQ5tC4XaC271Nn_Retu0RjS3PcRd_RPoV19EPsWtrVdNGETJv9YDehjT4Oh2tyUdtdDje_d04-n58-lq9s9f7ytlysmBdYDUwERFcpp4uCB7FW3Covq6IoQQvphUVRC-uV44WTXGmLyoWKi6p04IDrtZiTu6l3fPJ7H_Jgtt0-teOk4VBJzbEo5UjhRPnU5ZxCbfoUG5sOBsGcVJlJlRlVmZMqcxwzfMrkkW03If01_x_6AYVxaxo</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Cerruela García, Gonzalo</creator><creator>García-Pedrajas, Nicolás</creator><creator>Luque Ruiz, Irene</creator><creator>Gómez-Nieto, Miguel Ángel</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9140-3347</orcidid></search><sort><creationdate>20180801</creationdate><title>An ensemble approach for in silico prediction of Ames mutagenicity</title><author>Cerruela García, Gonzalo ; García-Pedrajas, Nicolás ; Luque Ruiz, Irene ; Gómez-Nieto, Miguel Ángel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3e11b68b9442e3d82a8c764450937c3a13f3ac8b24b7289a18be62365b0b029d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Classifiers</topic><topic>Discriminant analysis</topic><topic>Forecasting</topic><topic>Machine learning</topic><topic>Math. Applications in Chemistry</topic><topic>Molecular chains</topic><topic>Mutagenicity</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cerruela García, Gonzalo</creatorcontrib><creatorcontrib>García-Pedrajas, Nicolás</creatorcontrib><creatorcontrib>Luque Ruiz, Irene</creatorcontrib><creatorcontrib>Gómez-Nieto, Miguel Ángel</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cerruela García, Gonzalo</au><au>García-Pedrajas, Nicolás</au><au>Luque Ruiz, Irene</au><au>Gómez-Nieto, Miguel Ángel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ensemble approach for in silico prediction of Ames mutagenicity</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>56</volume><issue>7</issue><spage>2085</spage><epage>2098</epage><pages>2085-2098</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>In this paper, we evaluate three learning algorithms based on supervised projections for molecular activity prediction. Using an approach based on supervised projections of the input space to construct ensembles of classifiers, three algorithms were tested. We constructed the projections by considering only instances that were misclassified by a previous classifier using the hidden layer of an Artificial Neural Network. We applied a supervised linear projection of the input space using a Nonparametric Discriminant Analysis method. Finally, we projected onto a subspace that minimizes the weighted error for each step. Using these three methods to construct ensembles of classifiers for the in silico prediction of Ames mutagenicity, we demonstrated the improved behavior of our proposal compared to classical methods.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-018-0855-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9140-3347</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0259-9791 |
ispartof | Journal of mathematical chemistry, 2018-08, Vol.56 (7), p.2085-2098 |
issn | 0259-9791 1572-8897 |
language | eng |
recordid | cdi_proquest_journals_2067921457 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Artificial neural networks Chemistry Chemistry and Materials Science Classifiers Discriminant analysis Forecasting Machine learning Math. Applications in Chemistry Molecular chains Mutagenicity Neural networks Original Paper Physical Chemistry Theoretical and Computational Chemistry |
title | An ensemble approach for in silico prediction of Ames mutagenicity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ensemble%20approach%20for%20in%20silico%20prediction%20of%20Ames%20mutagenicity&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Cerruela%20Garc%C3%ADa,%20Gonzalo&rft.date=2018-08-01&rft.volume=56&rft.issue=7&rft.spage=2085&rft.epage=2098&rft.pages=2085-2098&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-018-0855-z&rft_dat=%3Cproquest_cross%3E2067921457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2067921457&rft_id=info:pmid/&rfr_iscdi=true |