Selective Aerobic Oxidation of Alcohols with NO3− Activated Nitroxyl Radical/Manganese Catalyst System

A homogeneous Mn(NO3)2/2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl/2‐picolinic acid catalyst system is highly active and versatile for the selective aerobic oxidation of alcohols (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl=TEMPO, 2‐picolinic acid=PyCOOH). The catalytic method enables near quantitative conver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2018-07, Vol.10 (13), p.2908-2914
Hauptverfasser: Lagerblom, Kalle, Keskiväli, Juha, Parviainen, Arno, Mannisto, Jere, Repo, Timo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2914
container_issue 13
container_start_page 2908
container_title ChemCatChem
container_volume 10
creator Lagerblom, Kalle
Keskiväli, Juha
Parviainen, Arno
Mannisto, Jere
Repo, Timo
description A homogeneous Mn(NO3)2/2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl/2‐picolinic acid catalyst system is highly active and versatile for the selective aerobic oxidation of alcohols (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl=TEMPO, 2‐picolinic acid=PyCOOH). The catalytic method enables near quantitative conversion of various primary alcohols to the respective aldehydes using a very simple reaction setup and workup. This study presents findings on the catalyst stability and mechanisms of deactivation. The results show that NO3− plays a crucial catalytic role in the reaction as a source of oxygen activating NOx species. Yet, disproportionation of NO3− to the volatile NO2 during the reaction leads to catalyst deactivation under open air conditions. Catalyst deactivation through this route can be overcome by adding a catalytic amount of nitrate salt, for example NaNO3 into the reaction. This stabilizes the Mn(NO3)2/TEMPO/PyCOOH catalyst and enables oxidation of various primary alcohols to the respective aldehydes using low catalyst loadings under ambient conditions. Secondary alcohols can be oxidized with a modified catalyst utilizing sterically accessible nitroxyl radical 9‐azabicyclo[3.3.1]nonane N‐oxyl (ABNO) instead of TEMPO. At the end of the alcohol oxidation, pure carbonyl products and the reusable catalyst can be recovered simply by extracting with organic solvent and dilute aqueous acid, followed by evaporation of both phases. NO3− problem! Aerobic oxidation of alcohols with homogenous Mn/nitroxyl radical‐based catalyst is investigated. The study presents findings on catalyst stability and its deactivation mechanisms as well as shows that catalyst deactivation can be overcome by adding small amount of nitrate ions into the reaction. The nitrate stabilized catalyst enables straightforward, highly practical and selective oxidation of various alcohols to aldehydes and ketones under mild conditions.
doi_str_mv 10.1002/cctc.201800438
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2067572053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067572053</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2738-8342b666e91a3a915403fdc629be80bff325571f50b03d46966e155b225a21d03</originalsourceid><addsrcrecordid>eNo9kE1OwzAQRiMEEqWwZW2JddqxHTv2Mor4k0or0bK2HMehrtymJC5tbsCaI3ISUoG6mZlPejMjvSi6xTDCAGRsTDAjAlgAJFScRQMseBpTIeX5aRZwGV217QqAS5qyQbScW29NcJ8WZbapC2fQ7OBKHVy9QXWFMm_qZe1btHdhiaYz-vP1jbLjgg62RFMXmvrQefSqS2e0H7_ozbve2NaiXAftuzageV_s-jq6qLRv7c1_H0ZvD_eL_CmezB6f82wSb0lKRSxoQgrOuZVYUy0xS4BWpeFEFlZAUVWUMJbiikEBtEy47FHMWEEI0wSXQIfR3d_dbVN_7Gwb1KreNZv-pSLAU5YSYLSn5B-1d952atu4tW46hUEdVaqjSnVSqfJ8kZ8S_QVvrmqD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067572053</pqid></control><display><type>article</type><title>Selective Aerobic Oxidation of Alcohols with NO3− Activated Nitroxyl Radical/Manganese Catalyst System</title><source>Access via Wiley Online Library</source><creator>Lagerblom, Kalle ; Keskiväli, Juha ; Parviainen, Arno ; Mannisto, Jere ; Repo, Timo</creator><creatorcontrib>Lagerblom, Kalle ; Keskiväli, Juha ; Parviainen, Arno ; Mannisto, Jere ; Repo, Timo</creatorcontrib><description>A homogeneous Mn(NO3)2/2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl/2‐picolinic acid catalyst system is highly active and versatile for the selective aerobic oxidation of alcohols (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl=TEMPO, 2‐picolinic acid=PyCOOH). The catalytic method enables near quantitative conversion of various primary alcohols to the respective aldehydes using a very simple reaction setup and workup. This study presents findings on the catalyst stability and mechanisms of deactivation. The results show that NO3− plays a crucial catalytic role in the reaction as a source of oxygen activating NOx species. Yet, disproportionation of NO3− to the volatile NO2 during the reaction leads to catalyst deactivation under open air conditions. Catalyst deactivation through this route can be overcome by adding a catalytic amount of nitrate salt, for example NaNO3 into the reaction. This stabilizes the Mn(NO3)2/TEMPO/PyCOOH catalyst and enables oxidation of various primary alcohols to the respective aldehydes using low catalyst loadings under ambient conditions. Secondary alcohols can be oxidized with a modified catalyst utilizing sterically accessible nitroxyl radical 9‐azabicyclo[3.3.1]nonane N‐oxyl (ABNO) instead of TEMPO. At the end of the alcohol oxidation, pure carbonyl products and the reusable catalyst can be recovered simply by extracting with organic solvent and dilute aqueous acid, followed by evaporation of both phases. NO3− problem! Aerobic oxidation of alcohols with homogenous Mn/nitroxyl radical‐based catalyst is investigated. The study presents findings on catalyst stability and its deactivation mechanisms as well as shows that catalyst deactivation can be overcome by adding small amount of nitrate ions into the reaction. The nitrate stabilized catalyst enables straightforward, highly practical and selective oxidation of various alcohols to aldehydes and ketones under mild conditions.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.201800438</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alcohol ; Alcohols ; Aldehydes ; Carbonyls ; Catalysts ; Catalytic converters ; Deactivation ; Dilution ; Disproportionation ; Manganese ; Nitrogen dioxide ; Oxidation ; radical catalysis ; synthetic methods</subject><ispartof>ChemCatChem, 2018-07, Vol.10 (13), p.2908-2914</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3682-2471 ; 0000-0003-2103-4675 ; 0000-0003-0383-7597 ; 0000-0002-3116-6199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcctc.201800438$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcctc.201800438$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Lagerblom, Kalle</creatorcontrib><creatorcontrib>Keskiväli, Juha</creatorcontrib><creatorcontrib>Parviainen, Arno</creatorcontrib><creatorcontrib>Mannisto, Jere</creatorcontrib><creatorcontrib>Repo, Timo</creatorcontrib><title>Selective Aerobic Oxidation of Alcohols with NO3− Activated Nitroxyl Radical/Manganese Catalyst System</title><title>ChemCatChem</title><description>A homogeneous Mn(NO3)2/2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl/2‐picolinic acid catalyst system is highly active and versatile for the selective aerobic oxidation of alcohols (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl=TEMPO, 2‐picolinic acid=PyCOOH). The catalytic method enables near quantitative conversion of various primary alcohols to the respective aldehydes using a very simple reaction setup and workup. This study presents findings on the catalyst stability and mechanisms of deactivation. The results show that NO3− plays a crucial catalytic role in the reaction as a source of oxygen activating NOx species. Yet, disproportionation of NO3− to the volatile NO2 during the reaction leads to catalyst deactivation under open air conditions. Catalyst deactivation through this route can be overcome by adding a catalytic amount of nitrate salt, for example NaNO3 into the reaction. This stabilizes the Mn(NO3)2/TEMPO/PyCOOH catalyst and enables oxidation of various primary alcohols to the respective aldehydes using low catalyst loadings under ambient conditions. Secondary alcohols can be oxidized with a modified catalyst utilizing sterically accessible nitroxyl radical 9‐azabicyclo[3.3.1]nonane N‐oxyl (ABNO) instead of TEMPO. At the end of the alcohol oxidation, pure carbonyl products and the reusable catalyst can be recovered simply by extracting with organic solvent and dilute aqueous acid, followed by evaporation of both phases. NO3− problem! Aerobic oxidation of alcohols with homogenous Mn/nitroxyl radical‐based catalyst is investigated. The study presents findings on catalyst stability and its deactivation mechanisms as well as shows that catalyst deactivation can be overcome by adding small amount of nitrate ions into the reaction. The nitrate stabilized catalyst enables straightforward, highly practical and selective oxidation of various alcohols to aldehydes and ketones under mild conditions.</description><subject>Alcohol</subject><subject>Alcohols</subject><subject>Aldehydes</subject><subject>Carbonyls</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Deactivation</subject><subject>Dilution</subject><subject>Disproportionation</subject><subject>Manganese</subject><subject>Nitrogen dioxide</subject><subject>Oxidation</subject><subject>radical catalysis</subject><subject>synthetic methods</subject><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kE1OwzAQRiMEEqWwZW2JddqxHTv2Mor4k0or0bK2HMehrtymJC5tbsCaI3ISUoG6mZlPejMjvSi6xTDCAGRsTDAjAlgAJFScRQMseBpTIeX5aRZwGV217QqAS5qyQbScW29NcJ8WZbapC2fQ7OBKHVy9QXWFMm_qZe1btHdhiaYz-vP1jbLjgg62RFMXmvrQefSqS2e0H7_ozbve2NaiXAftuzageV_s-jq6qLRv7c1_H0ZvD_eL_CmezB6f82wSb0lKRSxoQgrOuZVYUy0xS4BWpeFEFlZAUVWUMJbiikEBtEy47FHMWEEI0wSXQIfR3d_dbVN_7Gwb1KreNZv-pSLAU5YSYLSn5B-1d952atu4tW46hUEdVaqjSnVSqfJ8kZ8S_QVvrmqD</recordid><startdate>20180709</startdate><enddate>20180709</enddate><creator>Lagerblom, Kalle</creator><creator>Keskiväli, Juha</creator><creator>Parviainen, Arno</creator><creator>Mannisto, Jere</creator><creator>Repo, Timo</creator><general>Wiley Subscription Services, Inc</general><scope/><orcidid>https://orcid.org/0000-0003-3682-2471</orcidid><orcidid>https://orcid.org/0000-0003-2103-4675</orcidid><orcidid>https://orcid.org/0000-0003-0383-7597</orcidid><orcidid>https://orcid.org/0000-0002-3116-6199</orcidid></search><sort><creationdate>20180709</creationdate><title>Selective Aerobic Oxidation of Alcohols with NO3− Activated Nitroxyl Radical/Manganese Catalyst System</title><author>Lagerblom, Kalle ; Keskiväli, Juha ; Parviainen, Arno ; Mannisto, Jere ; Repo, Timo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2738-8342b666e91a3a915403fdc629be80bff325571f50b03d46966e155b225a21d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alcohol</topic><topic>Alcohols</topic><topic>Aldehydes</topic><topic>Carbonyls</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Deactivation</topic><topic>Dilution</topic><topic>Disproportionation</topic><topic>Manganese</topic><topic>Nitrogen dioxide</topic><topic>Oxidation</topic><topic>radical catalysis</topic><topic>synthetic methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lagerblom, Kalle</creatorcontrib><creatorcontrib>Keskiväli, Juha</creatorcontrib><creatorcontrib>Parviainen, Arno</creatorcontrib><creatorcontrib>Mannisto, Jere</creatorcontrib><creatorcontrib>Repo, Timo</creatorcontrib><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lagerblom, Kalle</au><au>Keskiväli, Juha</au><au>Parviainen, Arno</au><au>Mannisto, Jere</au><au>Repo, Timo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Aerobic Oxidation of Alcohols with NO3− Activated Nitroxyl Radical/Manganese Catalyst System</atitle><jtitle>ChemCatChem</jtitle><date>2018-07-09</date><risdate>2018</risdate><volume>10</volume><issue>13</issue><spage>2908</spage><epage>2914</epage><pages>2908-2914</pages><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>A homogeneous Mn(NO3)2/2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl/2‐picolinic acid catalyst system is highly active and versatile for the selective aerobic oxidation of alcohols (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl=TEMPO, 2‐picolinic acid=PyCOOH). The catalytic method enables near quantitative conversion of various primary alcohols to the respective aldehydes using a very simple reaction setup and workup. This study presents findings on the catalyst stability and mechanisms of deactivation. The results show that NO3− plays a crucial catalytic role in the reaction as a source of oxygen activating NOx species. Yet, disproportionation of NO3− to the volatile NO2 during the reaction leads to catalyst deactivation under open air conditions. Catalyst deactivation through this route can be overcome by adding a catalytic amount of nitrate salt, for example NaNO3 into the reaction. This stabilizes the Mn(NO3)2/TEMPO/PyCOOH catalyst and enables oxidation of various primary alcohols to the respective aldehydes using low catalyst loadings under ambient conditions. Secondary alcohols can be oxidized with a modified catalyst utilizing sterically accessible nitroxyl radical 9‐azabicyclo[3.3.1]nonane N‐oxyl (ABNO) instead of TEMPO. At the end of the alcohol oxidation, pure carbonyl products and the reusable catalyst can be recovered simply by extracting with organic solvent and dilute aqueous acid, followed by evaporation of both phases. NO3− problem! Aerobic oxidation of alcohols with homogenous Mn/nitroxyl radical‐based catalyst is investigated. The study presents findings on catalyst stability and its deactivation mechanisms as well as shows that catalyst deactivation can be overcome by adding small amount of nitrate ions into the reaction. The nitrate stabilized catalyst enables straightforward, highly practical and selective oxidation of various alcohols to aldehydes and ketones under mild conditions.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cctc.201800438</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3682-2471</orcidid><orcidid>https://orcid.org/0000-0003-2103-4675</orcidid><orcidid>https://orcid.org/0000-0003-0383-7597</orcidid><orcidid>https://orcid.org/0000-0002-3116-6199</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2018-07, Vol.10 (13), p.2908-2914
issn 1867-3880
1867-3899
language eng
recordid cdi_proquest_journals_2067572053
source Access via Wiley Online Library
subjects Alcohol
Alcohols
Aldehydes
Carbonyls
Catalysts
Catalytic converters
Deactivation
Dilution
Disproportionation
Manganese
Nitrogen dioxide
Oxidation
radical catalysis
synthetic methods
title Selective Aerobic Oxidation of Alcohols with NO3− Activated Nitroxyl Radical/Manganese Catalyst System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T20%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Aerobic%20Oxidation%20of%20Alcohols%20with%20NO3%E2%88%92%20Activated%20Nitroxyl%20Radical/Manganese%20Catalyst%20System&rft.jtitle=ChemCatChem&rft.au=Lagerblom,%20Kalle&rft.date=2018-07-09&rft.volume=10&rft.issue=13&rft.spage=2908&rft.epage=2914&rft.pages=2908-2914&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.201800438&rft_dat=%3Cproquest_wiley%3E2067572053%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2067572053&rft_id=info:pmid/&rfr_iscdi=true