Structure and Thermoelectric Properties of Nanostructured Bi1−x Sb x Alloys Synthesized by Mechanical Alloying
We report on the synthesis of Bi1−xSbx alloys and the investigation of the relationship between their structural and thermoelectric properties. In order to produce a compound that will work efficiently even above room temperature, Bi1−xSbx alloys were chosen, as they are known to be the best suited...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2018-10, Vol.47 (10), p.6007-6015 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6015 |
---|---|
container_issue | 10 |
container_start_page | 6007 |
container_title | Journal of electronic materials |
container_volume | 47 |
creator | Güneş, Ekrem Landschreiber, Bernadette Homm, Gert Wiegand, Christoph Tomeš, Petr Will, Christian Elm, Matthias T Paschen, Silke Klar, Peter J Schlecht, Sabine Wickleder, Mathias S |
description | We report on the synthesis of Bi1−xSbx alloys and the investigation of the relationship between their structural and thermoelectric properties. In order to produce a compound that will work efficiently even above room temperature, Bi1−xSbx alloys were chosen, as they are known to be the best suited n-type thermoelectric materials in the low-temperature regime (200 K). Using a top–down method, we produced nanostructured Bi1−xSbx powders by ball-milling in the whole composition range of 0 |
doi_str_mv | 10.1007/s11664-018-6487-z |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2067506885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067506885</sourcerecordid><originalsourceid>FETCH-proquest_journals_20675068853</originalsourceid><addsrcrecordid>eNqNyjFOwzAUgGELgUQoHIDtScwGvyZ2vAICsRQhpUO3ynVfiatgB9uRmp6AmSNyEioBO9M__B9jlyiuUYj6JiEqVXGBmqtK13x_xAqUVclRq8UxK0SpkMtpKU_ZWUpbIVCixoL1TY6DzUMkMH4N85biW6CObI7OwksMPcXsKEHYwLPxIf3xNdw5_Pr43EGzgh3cdl0YEzSjzy0ltz_81Qgzsq3xzpruBzj_es5ONqZLdPHbCbt6fJjfP_E-hveBUl5uwxD9YS2nQtVSKK1l-T_1DXfPUwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067506885</pqid></control><display><type>article</type><title>Structure and Thermoelectric Properties of Nanostructured Bi1−x Sb x Alloys Synthesized by Mechanical Alloying</title><source>SpringerLink Journals</source><creator>Güneş, Ekrem ; Landschreiber, Bernadette ; Homm, Gert ; Wiegand, Christoph ; Tomeš, Petr ; Will, Christian ; Elm, Matthias T ; Paschen, Silke ; Klar, Peter J ; Schlecht, Sabine ; Wickleder, Mathias S</creator><creatorcontrib>Güneş, Ekrem ; Landschreiber, Bernadette ; Homm, Gert ; Wiegand, Christoph ; Tomeš, Petr ; Will, Christian ; Elm, Matthias T ; Paschen, Silke ; Klar, Peter J ; Schlecht, Sabine ; Wickleder, Mathias S</creatorcontrib><description>We report on the synthesis of Bi1−xSbx alloys and the investigation of the relationship between their structural and thermoelectric properties. In order to produce a compound that will work efficiently even above room temperature, Bi1−xSbx alloys were chosen, as they are known to be the best suited n-type thermoelectric materials in the low-temperature regime (200 K). Using a top–down method, we produced nanostructured Bi1−xSbx powders by ball-milling in the whole composition range of 0 < x < 1.0. Nanostructuring of Bi1−xSbx alloys increases the band gap and thus results in an enlargement of the semiconducting composition region (0 ≤ x ≤ 0.5) compared to its bulk counterpart (0.07 ≤ x ≤ 0.22). The enhancement of the band gap strongly affects the transport properties of the alloys, i.e. the electrical conductivity and the Seebeck coefficient. Moreover, nanostructuring reduces the thermal conductivity through the implementation of grain boundaries as phonon-scattering centers, leading to a significant enhancement of the thermoelectric properties. The highest figure-of-merit observed in this study is 0.25 which was found for Bi0.87Sb0.13 at 280 K.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-018-6487-z</identifier><language>eng</language><publisher>Warrendale: Springer Nature B.V</publisher><subject>Ball milling ; Band gap ; Composition ; Electrical resistivity ; Enlargement ; Grain boundaries ; Mechanical alloying ; Nanostructure ; Seebeck effect ; Thermal conductivity ; Thermoelectric materials</subject><ispartof>Journal of electronic materials, 2018-10, Vol.47 (10), p.6007-6015</ispartof><rights>Journal of Electronic Materials is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Güneş, Ekrem</creatorcontrib><creatorcontrib>Landschreiber, Bernadette</creatorcontrib><creatorcontrib>Homm, Gert</creatorcontrib><creatorcontrib>Wiegand, Christoph</creatorcontrib><creatorcontrib>Tomeš, Petr</creatorcontrib><creatorcontrib>Will, Christian</creatorcontrib><creatorcontrib>Elm, Matthias T</creatorcontrib><creatorcontrib>Paschen, Silke</creatorcontrib><creatorcontrib>Klar, Peter J</creatorcontrib><creatorcontrib>Schlecht, Sabine</creatorcontrib><creatorcontrib>Wickleder, Mathias S</creatorcontrib><title>Structure and Thermoelectric Properties of Nanostructured Bi1−x Sb x Alloys Synthesized by Mechanical Alloying</title><title>Journal of electronic materials</title><description>We report on the synthesis of Bi1−xSbx alloys and the investigation of the relationship between their structural and thermoelectric properties. In order to produce a compound that will work efficiently even above room temperature, Bi1−xSbx alloys were chosen, as they are known to be the best suited n-type thermoelectric materials in the low-temperature regime (200 K). Using a top–down method, we produced nanostructured Bi1−xSbx powders by ball-milling in the whole composition range of 0 < x < 1.0. Nanostructuring of Bi1−xSbx alloys increases the band gap and thus results in an enlargement of the semiconducting composition region (0 ≤ x ≤ 0.5) compared to its bulk counterpart (0.07 ≤ x ≤ 0.22). The enhancement of the band gap strongly affects the transport properties of the alloys, i.e. the electrical conductivity and the Seebeck coefficient. Moreover, nanostructuring reduces the thermal conductivity through the implementation of grain boundaries as phonon-scattering centers, leading to a significant enhancement of the thermoelectric properties. The highest figure-of-merit observed in this study is 0.25 which was found for Bi0.87Sb0.13 at 280 K.</description><subject>Ball milling</subject><subject>Band gap</subject><subject>Composition</subject><subject>Electrical resistivity</subject><subject>Enlargement</subject><subject>Grain boundaries</subject><subject>Mechanical alloying</subject><subject>Nanostructure</subject><subject>Seebeck effect</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNyjFOwzAUgGELgUQoHIDtScwGvyZ2vAICsRQhpUO3ynVfiatgB9uRmp6AmSNyEioBO9M__B9jlyiuUYj6JiEqVXGBmqtK13x_xAqUVclRq8UxK0SpkMtpKU_ZWUpbIVCixoL1TY6DzUMkMH4N85biW6CObI7OwksMPcXsKEHYwLPxIf3xNdw5_Pr43EGzgh3cdl0YEzSjzy0ltz_81Qgzsq3xzpruBzj_es5ONqZLdPHbCbt6fJjfP_E-hveBUl5uwxD9YS2nQtVSKK1l-T_1DXfPUwI</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Güneş, Ekrem</creator><creator>Landschreiber, Bernadette</creator><creator>Homm, Gert</creator><creator>Wiegand, Christoph</creator><creator>Tomeš, Petr</creator><creator>Will, Christian</creator><creator>Elm, Matthias T</creator><creator>Paschen, Silke</creator><creator>Klar, Peter J</creator><creator>Schlecht, Sabine</creator><creator>Wickleder, Mathias S</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20181001</creationdate><title>Structure and Thermoelectric Properties of Nanostructured Bi1−x Sb x Alloys Synthesized by Mechanical Alloying</title><author>Güneş, Ekrem ; Landschreiber, Bernadette ; Homm, Gert ; Wiegand, Christoph ; Tomeš, Petr ; Will, Christian ; Elm, Matthias T ; Paschen, Silke ; Klar, Peter J ; Schlecht, Sabine ; Wickleder, Mathias S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20675068853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Ball milling</topic><topic>Band gap</topic><topic>Composition</topic><topic>Electrical resistivity</topic><topic>Enlargement</topic><topic>Grain boundaries</topic><topic>Mechanical alloying</topic><topic>Nanostructure</topic><topic>Seebeck effect</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Güneş, Ekrem</creatorcontrib><creatorcontrib>Landschreiber, Bernadette</creatorcontrib><creatorcontrib>Homm, Gert</creatorcontrib><creatorcontrib>Wiegand, Christoph</creatorcontrib><creatorcontrib>Tomeš, Petr</creatorcontrib><creatorcontrib>Will, Christian</creatorcontrib><creatorcontrib>Elm, Matthias T</creatorcontrib><creatorcontrib>Paschen, Silke</creatorcontrib><creatorcontrib>Klar, Peter J</creatorcontrib><creatorcontrib>Schlecht, Sabine</creatorcontrib><creatorcontrib>Wickleder, Mathias S</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Güneş, Ekrem</au><au>Landschreiber, Bernadette</au><au>Homm, Gert</au><au>Wiegand, Christoph</au><au>Tomeš, Petr</au><au>Will, Christian</au><au>Elm, Matthias T</au><au>Paschen, Silke</au><au>Klar, Peter J</au><au>Schlecht, Sabine</au><au>Wickleder, Mathias S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Thermoelectric Properties of Nanostructured Bi1−x Sb x Alloys Synthesized by Mechanical Alloying</atitle><jtitle>Journal of electronic materials</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>47</volume><issue>10</issue><spage>6007</spage><epage>6015</epage><pages>6007-6015</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>We report on the synthesis of Bi1−xSbx alloys and the investigation of the relationship between their structural and thermoelectric properties. In order to produce a compound that will work efficiently even above room temperature, Bi1−xSbx alloys were chosen, as they are known to be the best suited n-type thermoelectric materials in the low-temperature regime (200 K). Using a top–down method, we produced nanostructured Bi1−xSbx powders by ball-milling in the whole composition range of 0 < x < 1.0. Nanostructuring of Bi1−xSbx alloys increases the band gap and thus results in an enlargement of the semiconducting composition region (0 ≤ x ≤ 0.5) compared to its bulk counterpart (0.07 ≤ x ≤ 0.22). The enhancement of the band gap strongly affects the transport properties of the alloys, i.e. the electrical conductivity and the Seebeck coefficient. Moreover, nanostructuring reduces the thermal conductivity through the implementation of grain boundaries as phonon-scattering centers, leading to a significant enhancement of the thermoelectric properties. The highest figure-of-merit observed in this study is 0.25 which was found for Bi0.87Sb0.13 at 280 K.</abstract><cop>Warrendale</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11664-018-6487-z</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2018-10, Vol.47 (10), p.6007-6015 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2067506885 |
source | SpringerLink Journals |
subjects | Ball milling Band gap Composition Electrical resistivity Enlargement Grain boundaries Mechanical alloying Nanostructure Seebeck effect Thermal conductivity Thermoelectric materials |
title | Structure and Thermoelectric Properties of Nanostructured Bi1−x Sb x Alloys Synthesized by Mechanical Alloying |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Thermoelectric%20Properties%20of%20Nanostructured%20Bi1%E2%88%92x%20Sb%20x%20Alloys%20Synthesized%20by%20Mechanical%20Alloying&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=G%C3%BCne%C5%9F,%20Ekrem&rft.date=2018-10-01&rft.volume=47&rft.issue=10&rft.spage=6007&rft.epage=6015&rft.pages=6007-6015&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-018-6487-z&rft_dat=%3Cproquest%3E2067506885%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2067506885&rft_id=info:pmid/&rfr_iscdi=true |