Identifying single influential publications in a research field: new analysis opportunities of the CRExplorer
Reference Publication Year Spectroscopy (RPYS) has been developed for identifying the cited references (CRs) with the greatest influence in a given paper set (mostly sets of papers on certain topics or fields). The program CRExplorer (see www.crexplorer.net ) was specifically developed by Thor et al...
Gespeichert in:
Veröffentlicht in: | Scientometrics 2018-07, Vol.116 (1), p.591-608 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 608 |
---|---|
container_issue | 1 |
container_start_page | 591 |
container_title | Scientometrics |
container_volume | 116 |
creator | Thor, Andreas Bornmann, Lutz Marx, Werner Mutz, Rüdiger |
description | Reference Publication Year Spectroscopy (RPYS) has been developed for identifying the cited references (CRs) with the greatest influence in a given paper set (mostly sets of papers on certain topics or fields). The program CRExplorer (see
www.crexplorer.net
) was specifically developed by Thor et al. (J Informetr 10:503–515,
2016a
; Scientometrics 109:2049–2051,
2016b
) for applying RPYS to publication sets downloaded from Scopus or Web of Science. In this study, we present some advanced methods which have been newly developed for CRExplorer. These methods are able to identify and characterize the CRs which have been influential across a longer period (many citing years). The new methods are demonstrated in this study using all the papers published in
Scientometrics
between 1978 and 2016. The indicators N_TOP50, N_TOP25, and N_TOP10 can be used to identify those CRs which belong to the 50, 25, or 10% most frequently cited publications (CRs) over many citing publication years. In the
Scientometrics
dataset, for example, Lotka’s (J Wash Acad Sci 12:317–323,
1926
) paper on the distribution of scientific productivity belongs to the top 10% publications (CRs) in 36 citing years. Furthermore, the new version of CRExplorer analyzes the impact sequence of CRs across citing years. CRs can have below average (−), average (0), or above average (+) impact in citing years (whereby average is meant in the sense of expected values). The sequence (e.g. 00++−−−0−−00) is used by the program to identify papers with typical impact distributions. For example, CRs can have early, but not late impact (“hot papers”, e.g. +++−−−) or vice versa (“sleeping beauties”, e.g. −−−0000−−−++). |
doi_str_mv | 10.1007/s11192-018-2733-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2067201810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067201810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-107307b8c7f139c7cc0b6454e51a7cba35f1a6e8bdfa2cdc1e6f085f19a284713</originalsourceid><addsrcrecordid>eNp1UE1LxDAUDKLguvoDvAU8V_OStkm9ybJ-wIIgeg5pmuxmybY1adH996ZU8OTlPd68mWEYhK6B3AIh_C4CQEUzAiKjnLGMn6AFFCJdooRTtCDARFYBI-foIsY9SRpGxAIdXhrTDs4eXbvFMQ1vsGutHydUedyPtXdaDa5rY3pghYOJRgW9w9YZ39zj1nxh1Sp_jC7iru-7MIytG5xJl8XDzuDV2_q7910w4RKdWeWjufrdS_TxuH5fPWeb16eX1cMm0znQIYMpHK-F5hZYpbnWpC7zIjcFKK5rxQoLqjSibqyiutFgSktEAitFRc6BLdHN7NuH7nM0cZD7bgwpZJSUlJymmoAkFswsHboYg7GyD-6gwlECkVOrcm5VJrqcWpU8aeisiYnbbk34c_5f9AO64XwO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067201810</pqid></control><display><type>article</type><title>Identifying single influential publications in a research field: new analysis opportunities of the CRExplorer</title><source>SpringerLink Journals - AutoHoldings</source><creator>Thor, Andreas ; Bornmann, Lutz ; Marx, Werner ; Mutz, Rüdiger</creator><creatorcontrib>Thor, Andreas ; Bornmann, Lutz ; Marx, Werner ; Mutz, Rüdiger</creatorcontrib><description>Reference Publication Year Spectroscopy (RPYS) has been developed for identifying the cited references (CRs) with the greatest influence in a given paper set (mostly sets of papers on certain topics or fields). The program CRExplorer (see
www.crexplorer.net
) was specifically developed by Thor et al. (J Informetr 10:503–515,
2016a
; Scientometrics 109:2049–2051,
2016b
) for applying RPYS to publication sets downloaded from Scopus or Web of Science. In this study, we present some advanced methods which have been newly developed for CRExplorer. These methods are able to identify and characterize the CRs which have been influential across a longer period (many citing years). The new methods are demonstrated in this study using all the papers published in
Scientometrics
between 1978 and 2016. The indicators N_TOP50, N_TOP25, and N_TOP10 can be used to identify those CRs which belong to the 50, 25, or 10% most frequently cited publications (CRs) over many citing publication years. In the
Scientometrics
dataset, for example, Lotka’s (J Wash Acad Sci 12:317–323,
1926
) paper on the distribution of scientific productivity belongs to the top 10% publications (CRs) in 36 citing years. Furthermore, the new version of CRExplorer analyzes the impact sequence of CRs across citing years. CRs can have below average (−), average (0), or above average (+) impact in citing years (whereby average is meant in the sense of expected values). The sequence (e.g. 00++−−−0−−00) is used by the program to identify papers with typical impact distributions. For example, CRs can have early, but not late impact (“hot papers”, e.g. +++−−−) or vice versa (“sleeping beauties”, e.g. −−−0000−−−++).</description><identifier>ISSN: 0138-9130</identifier><identifier>EISSN: 1588-2861</identifier><identifier>DOI: 10.1007/s11192-018-2733-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Academic publications ; Citation analysis ; Computer Science ; Documents ; Identification methods ; Impact analysis ; Information Storage and Retrieval ; Library Science ; Scientific papers ; Scientometrics ; Spectroscopy</subject><ispartof>Scientometrics, 2018-07, Vol.116 (1), p.591-608</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-107307b8c7f139c7cc0b6454e51a7cba35f1a6e8bdfa2cdc1e6f085f19a284713</citedby><cites>FETCH-LOGICAL-c412t-107307b8c7f139c7cc0b6454e51a7cba35f1a6e8bdfa2cdc1e6f085f19a284713</cites><orcidid>0000-0003-0810-7091</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11192-018-2733-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11192-018-2733-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Thor, Andreas</creatorcontrib><creatorcontrib>Bornmann, Lutz</creatorcontrib><creatorcontrib>Marx, Werner</creatorcontrib><creatorcontrib>Mutz, Rüdiger</creatorcontrib><title>Identifying single influential publications in a research field: new analysis opportunities of the CRExplorer</title><title>Scientometrics</title><addtitle>Scientometrics</addtitle><description>Reference Publication Year Spectroscopy (RPYS) has been developed for identifying the cited references (CRs) with the greatest influence in a given paper set (mostly sets of papers on certain topics or fields). The program CRExplorer (see
www.crexplorer.net
) was specifically developed by Thor et al. (J Informetr 10:503–515,
2016a
; Scientometrics 109:2049–2051,
2016b
) for applying RPYS to publication sets downloaded from Scopus or Web of Science. In this study, we present some advanced methods which have been newly developed for CRExplorer. These methods are able to identify and characterize the CRs which have been influential across a longer period (many citing years). The new methods are demonstrated in this study using all the papers published in
Scientometrics
between 1978 and 2016. The indicators N_TOP50, N_TOP25, and N_TOP10 can be used to identify those CRs which belong to the 50, 25, or 10% most frequently cited publications (CRs) over many citing publication years. In the
Scientometrics
dataset, for example, Lotka’s (J Wash Acad Sci 12:317–323,
1926
) paper on the distribution of scientific productivity belongs to the top 10% publications (CRs) in 36 citing years. Furthermore, the new version of CRExplorer analyzes the impact sequence of CRs across citing years. CRs can have below average (−), average (0), or above average (+) impact in citing years (whereby average is meant in the sense of expected values). The sequence (e.g. 00++−−−0−−00) is used by the program to identify papers with typical impact distributions. For example, CRs can have early, but not late impact (“hot papers”, e.g. +++−−−) or vice versa (“sleeping beauties”, e.g. −−−0000−−−++).</description><subject>Academic publications</subject><subject>Citation analysis</subject><subject>Computer Science</subject><subject>Documents</subject><subject>Identification methods</subject><subject>Impact analysis</subject><subject>Information Storage and Retrieval</subject><subject>Library Science</subject><subject>Scientific papers</subject><subject>Scientometrics</subject><subject>Spectroscopy</subject><issn>0138-9130</issn><issn>1588-2861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1UE1LxDAUDKLguvoDvAU8V_OStkm9ybJ-wIIgeg5pmuxmybY1adH996ZU8OTlPd68mWEYhK6B3AIh_C4CQEUzAiKjnLGMn6AFFCJdooRTtCDARFYBI-foIsY9SRpGxAIdXhrTDs4eXbvFMQ1vsGutHydUedyPtXdaDa5rY3pghYOJRgW9w9YZ39zj1nxh1Sp_jC7iru-7MIytG5xJl8XDzuDV2_q7910w4RKdWeWjufrdS_TxuH5fPWeb16eX1cMm0znQIYMpHK-F5hZYpbnWpC7zIjcFKK5rxQoLqjSibqyiutFgSktEAitFRc6BLdHN7NuH7nM0cZD7bgwpZJSUlJymmoAkFswsHboYg7GyD-6gwlECkVOrcm5VJrqcWpU8aeisiYnbbk34c_5f9AO64XwO</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Thor, Andreas</creator><creator>Bornmann, Lutz</creator><creator>Marx, Werner</creator><creator>Mutz, Rüdiger</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>E3H</scope><scope>F2A</scope><orcidid>https://orcid.org/0000-0003-0810-7091</orcidid></search><sort><creationdate>20180701</creationdate><title>Identifying single influential publications in a research field: new analysis opportunities of the CRExplorer</title><author>Thor, Andreas ; Bornmann, Lutz ; Marx, Werner ; Mutz, Rüdiger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-107307b8c7f139c7cc0b6454e51a7cba35f1a6e8bdfa2cdc1e6f085f19a284713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Academic publications</topic><topic>Citation analysis</topic><topic>Computer Science</topic><topic>Documents</topic><topic>Identification methods</topic><topic>Impact analysis</topic><topic>Information Storage and Retrieval</topic><topic>Library Science</topic><topic>Scientific papers</topic><topic>Scientometrics</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thor, Andreas</creatorcontrib><creatorcontrib>Bornmann, Lutz</creatorcontrib><creatorcontrib>Marx, Werner</creatorcontrib><creatorcontrib>Mutz, Rüdiger</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><jtitle>Scientometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thor, Andreas</au><au>Bornmann, Lutz</au><au>Marx, Werner</au><au>Mutz, Rüdiger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying single influential publications in a research field: new analysis opportunities of the CRExplorer</atitle><jtitle>Scientometrics</jtitle><stitle>Scientometrics</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>116</volume><issue>1</issue><spage>591</spage><epage>608</epage><pages>591-608</pages><issn>0138-9130</issn><eissn>1588-2861</eissn><abstract>Reference Publication Year Spectroscopy (RPYS) has been developed for identifying the cited references (CRs) with the greatest influence in a given paper set (mostly sets of papers on certain topics or fields). The program CRExplorer (see
www.crexplorer.net
) was specifically developed by Thor et al. (J Informetr 10:503–515,
2016a
; Scientometrics 109:2049–2051,
2016b
) for applying RPYS to publication sets downloaded from Scopus or Web of Science. In this study, we present some advanced methods which have been newly developed for CRExplorer. These methods are able to identify and characterize the CRs which have been influential across a longer period (many citing years). The new methods are demonstrated in this study using all the papers published in
Scientometrics
between 1978 and 2016. The indicators N_TOP50, N_TOP25, and N_TOP10 can be used to identify those CRs which belong to the 50, 25, or 10% most frequently cited publications (CRs) over many citing publication years. In the
Scientometrics
dataset, for example, Lotka’s (J Wash Acad Sci 12:317–323,
1926
) paper on the distribution of scientific productivity belongs to the top 10% publications (CRs) in 36 citing years. Furthermore, the new version of CRExplorer analyzes the impact sequence of CRs across citing years. CRs can have below average (−), average (0), or above average (+) impact in citing years (whereby average is meant in the sense of expected values). The sequence (e.g. 00++−−−0−−00) is used by the program to identify papers with typical impact distributions. For example, CRs can have early, but not late impact (“hot papers”, e.g. +++−−−) or vice versa (“sleeping beauties”, e.g. −−−0000−−−++).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11192-018-2733-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-0810-7091</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0138-9130 |
ispartof | Scientometrics, 2018-07, Vol.116 (1), p.591-608 |
issn | 0138-9130 1588-2861 |
language | eng |
recordid | cdi_proquest_journals_2067201810 |
source | SpringerLink Journals - AutoHoldings |
subjects | Academic publications Citation analysis Computer Science Documents Identification methods Impact analysis Information Storage and Retrieval Library Science Scientific papers Scientometrics Spectroscopy |
title | Identifying single influential publications in a research field: new analysis opportunities of the CRExplorer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A24%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20single%20influential%20publications%20in%20a%20research%20field:%20new%20analysis%20opportunities%20of%20the%20CRExplorer&rft.jtitle=Scientometrics&rft.au=Thor,%20Andreas&rft.date=2018-07-01&rft.volume=116&rft.issue=1&rft.spage=591&rft.epage=608&rft.pages=591-608&rft.issn=0138-9130&rft.eissn=1588-2861&rft_id=info:doi/10.1007/s11192-018-2733-7&rft_dat=%3Cproquest_cross%3E2067201810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2067201810&rft_id=info:pmid/&rfr_iscdi=true |