Bose–Einstein condensation in a plasmonic lattice
Bose–Einstein condensation is a remarkable manifestation of quantum statistics and macroscopic quantum coherence. Superconductivity and superfluidity have their origin in Bose–Einstein condensation. Ultracold quantum gases have provided condensates close to the original ideas of Bose and Einstein, w...
Gespeichert in:
Veröffentlicht in: | Nature physics 2018-07, Vol.14 (7), p.739-744 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 744 |
---|---|
container_issue | 7 |
container_start_page | 739 |
container_title | Nature physics |
container_volume | 14 |
creator | Hakala, Tommi K. Moilanen, Antti J. Väkeväinen, Aaro I. Guo, Rui Martikainen, Jani-Petri Daskalakis, Konstantinos S. Rekola, Heikki T. Julku, Aleksi Törmä, Päivi |
description | Bose–Einstein condensation is a remarkable manifestation of quantum statistics and macroscopic quantum coherence. Superconductivity and superfluidity have their origin in Bose–Einstein condensation. Ultracold quantum gases have provided condensates close to the original ideas of Bose and Einstein, while condensation of polaritons and magnons has introduced novel concepts of non-equilibrium condensation. Here, we demonstrate a Bose–Einstein condensate of surface plasmon polaritons in lattice modes of a metal nanoparticle array. Interaction of the nanoscale-confined surface plasmons with a room-temperature bath of dye molecules enables thermalization and condensation in picoseconds. The ultrafast thermalization and condensation dynamics are revealed by an experiment that exploits thermalization under propagation and the open-cavity character of the system. A crossover from a Bose–Einstein condensate to usual lasing is realized by tailoring the band structure. This new condensate of surface plasmon lattice excitations has promise for future technologies due to its ultrafast, room-temperature and on-chip nature.
Surface plasmon polaritons in an array of metallic nanoparticles evolve quickly into the band minimum by interacting with a molecule bath, forming a Bose–Einstein condensate at room temperature within picoseconds. |
doi_str_mv | 10.1038/s41567-018-0109-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2067108551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067108551</sourcerecordid><originalsourceid>FETCH-LOGICAL-p226t-c19947a2b5b6d642e04702fade978cb1bcac3d7eaffe5048d68a10e0f387e1f73</originalsourceid><addsrcrecordid>eNpFkMtKxEAQRRtRcBz9AHcB161V_c5Sh_EBA2503XQ6FckQOzGd2fsP_qFfYoYRXRRVBYd74TB2iXCNIN1NVqiN5YBuHih5ecQWaJXmQjk8_rutPGVnOW8BlDAoF0ze9Zm-P7_WbcoTtamIfaop5TC1fSrmPxRDF_J7n9pYdGGa2kjn7KQJXaaL371kr_frl9Uj3zw_PK1uN3wQwkw8YlkqG0SlK1MbJQiUBdGEmkrrYoVVDFHWlkLTkAblauMCAkEjnSVsrFyyq0PuMPYfO8qT3_a7Mc2VXoCxCE5rnClxoPIwtumNxn8Kwe_l-IMcP8vxezm-lD97sFgZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067108551</pqid></control><display><type>article</type><title>Bose–Einstein condensation in a plasmonic lattice</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hakala, Tommi K. ; Moilanen, Antti J. ; Väkeväinen, Aaro I. ; Guo, Rui ; Martikainen, Jani-Petri ; Daskalakis, Konstantinos S. ; Rekola, Heikki T. ; Julku, Aleksi ; Törmä, Päivi</creator><creatorcontrib>Hakala, Tommi K. ; Moilanen, Antti J. ; Väkeväinen, Aaro I. ; Guo, Rui ; Martikainen, Jani-Petri ; Daskalakis, Konstantinos S. ; Rekola, Heikki T. ; Julku, Aleksi ; Törmä, Päivi</creatorcontrib><description>Bose–Einstein condensation is a remarkable manifestation of quantum statistics and macroscopic quantum coherence. Superconductivity and superfluidity have their origin in Bose–Einstein condensation. Ultracold quantum gases have provided condensates close to the original ideas of Bose and Einstein, while condensation of polaritons and magnons has introduced novel concepts of non-equilibrium condensation. Here, we demonstrate a Bose–Einstein condensate of surface plasmon polaritons in lattice modes of a metal nanoparticle array. Interaction of the nanoscale-confined surface plasmons with a room-temperature bath of dye molecules enables thermalization and condensation in picoseconds. The ultrafast thermalization and condensation dynamics are revealed by an experiment that exploits thermalization under propagation and the open-cavity character of the system. A crossover from a Bose–Einstein condensate to usual lasing is realized by tailoring the band structure. This new condensate of surface plasmon lattice excitations has promise for future technologies due to its ultrafast, room-temperature and on-chip nature.
Surface plasmon polaritons in an array of metallic nanoparticles evolve quickly into the band minimum by interacting with a molecule bath, forming a Bose–Einstein condensate at room temperature within picoseconds.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-018-0109-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>132/124 ; 140/125 ; 639/624/400 ; 639/766/119 ; 639/766/119/2791 ; 639/766/483 ; Atomic ; Bose-Einstein condensates ; Classical and Continuum Physics ; Coherence ; Complex Systems ; Condensates ; Condensation ; Condensed Matter Physics ; Energy ; Equilibrium ; Glass substrates ; Lasers ; Lattice vibration ; Magnons ; Mathematical and Computational Physics ; Molecular ; Molecular chains ; Nanoparticles ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Plasmons ; Polaritons ; Population ; Quantum phenomena ; Quantum statistics ; Superconductivity ; Superfluidity ; Theoretical ; Thermalization (energy absorption)</subject><ispartof>Nature physics, 2018-07, Vol.14 (7), p.739-744</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Jul 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3996-5219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-018-0109-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-018-0109-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hakala, Tommi K.</creatorcontrib><creatorcontrib>Moilanen, Antti J.</creatorcontrib><creatorcontrib>Väkeväinen, Aaro I.</creatorcontrib><creatorcontrib>Guo, Rui</creatorcontrib><creatorcontrib>Martikainen, Jani-Petri</creatorcontrib><creatorcontrib>Daskalakis, Konstantinos S.</creatorcontrib><creatorcontrib>Rekola, Heikki T.</creatorcontrib><creatorcontrib>Julku, Aleksi</creatorcontrib><creatorcontrib>Törmä, Päivi</creatorcontrib><title>Bose–Einstein condensation in a plasmonic lattice</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Bose–Einstein condensation is a remarkable manifestation of quantum statistics and macroscopic quantum coherence. Superconductivity and superfluidity have their origin in Bose–Einstein condensation. Ultracold quantum gases have provided condensates close to the original ideas of Bose and Einstein, while condensation of polaritons and magnons has introduced novel concepts of non-equilibrium condensation. Here, we demonstrate a Bose–Einstein condensate of surface plasmon polaritons in lattice modes of a metal nanoparticle array. Interaction of the nanoscale-confined surface plasmons with a room-temperature bath of dye molecules enables thermalization and condensation in picoseconds. The ultrafast thermalization and condensation dynamics are revealed by an experiment that exploits thermalization under propagation and the open-cavity character of the system. A crossover from a Bose–Einstein condensate to usual lasing is realized by tailoring the band structure. This new condensate of surface plasmon lattice excitations has promise for future technologies due to its ultrafast, room-temperature and on-chip nature.
Surface plasmon polaritons in an array of metallic nanoparticles evolve quickly into the band minimum by interacting with a molecule bath, forming a Bose–Einstein condensate at room temperature within picoseconds.</description><subject>132/124</subject><subject>140/125</subject><subject>639/624/400</subject><subject>639/766/119</subject><subject>639/766/119/2791</subject><subject>639/766/483</subject><subject>Atomic</subject><subject>Bose-Einstein condensates</subject><subject>Classical and Continuum Physics</subject><subject>Coherence</subject><subject>Complex Systems</subject><subject>Condensates</subject><subject>Condensation</subject><subject>Condensed Matter Physics</subject><subject>Energy</subject><subject>Equilibrium</subject><subject>Glass substrates</subject><subject>Lasers</subject><subject>Lattice vibration</subject><subject>Magnons</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Molecular chains</subject><subject>Nanoparticles</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasmons</subject><subject>Polaritons</subject><subject>Population</subject><subject>Quantum phenomena</subject><subject>Quantum statistics</subject><subject>Superconductivity</subject><subject>Superfluidity</subject><subject>Theoretical</subject><subject>Thermalization (energy absorption)</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFkMtKxEAQRRtRcBz9AHcB161V_c5Sh_EBA2503XQ6FckQOzGd2fsP_qFfYoYRXRRVBYd74TB2iXCNIN1NVqiN5YBuHih5ecQWaJXmQjk8_rutPGVnOW8BlDAoF0ze9Zm-P7_WbcoTtamIfaop5TC1fSrmPxRDF_J7n9pYdGGa2kjn7KQJXaaL371kr_frl9Uj3zw_PK1uN3wQwkw8YlkqG0SlK1MbJQiUBdGEmkrrYoVVDFHWlkLTkAblauMCAkEjnSVsrFyyq0PuMPYfO8qT3_a7Mc2VXoCxCE5rnClxoPIwtumNxn8Kwe_l-IMcP8vxezm-lD97sFgZ</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Hakala, Tommi K.</creator><creator>Moilanen, Antti J.</creator><creator>Väkeväinen, Aaro I.</creator><creator>Guo, Rui</creator><creator>Martikainen, Jani-Petri</creator><creator>Daskalakis, Konstantinos S.</creator><creator>Rekola, Heikki T.</creator><creator>Julku, Aleksi</creator><creator>Törmä, Päivi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3996-5219</orcidid></search><sort><creationdate>20180701</creationdate><title>Bose–Einstein condensation in a plasmonic lattice</title><author>Hakala, Tommi K. ; Moilanen, Antti J. ; Väkeväinen, Aaro I. ; Guo, Rui ; Martikainen, Jani-Petri ; Daskalakis, Konstantinos S. ; Rekola, Heikki T. ; Julku, Aleksi ; Törmä, Päivi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p226t-c19947a2b5b6d642e04702fade978cb1bcac3d7eaffe5048d68a10e0f387e1f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>132/124</topic><topic>140/125</topic><topic>639/624/400</topic><topic>639/766/119</topic><topic>639/766/119/2791</topic><topic>639/766/483</topic><topic>Atomic</topic><topic>Bose-Einstein condensates</topic><topic>Classical and Continuum Physics</topic><topic>Coherence</topic><topic>Complex Systems</topic><topic>Condensates</topic><topic>Condensation</topic><topic>Condensed Matter Physics</topic><topic>Energy</topic><topic>Equilibrium</topic><topic>Glass substrates</topic><topic>Lasers</topic><topic>Lattice vibration</topic><topic>Magnons</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Molecular chains</topic><topic>Nanoparticles</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasmons</topic><topic>Polaritons</topic><topic>Population</topic><topic>Quantum phenomena</topic><topic>Quantum statistics</topic><topic>Superconductivity</topic><topic>Superfluidity</topic><topic>Theoretical</topic><topic>Thermalization (energy absorption)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hakala, Tommi K.</creatorcontrib><creatorcontrib>Moilanen, Antti J.</creatorcontrib><creatorcontrib>Väkeväinen, Aaro I.</creatorcontrib><creatorcontrib>Guo, Rui</creatorcontrib><creatorcontrib>Martikainen, Jani-Petri</creatorcontrib><creatorcontrib>Daskalakis, Konstantinos S.</creatorcontrib><creatorcontrib>Rekola, Heikki T.</creatorcontrib><creatorcontrib>Julku, Aleksi</creatorcontrib><creatorcontrib>Törmä, Päivi</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hakala, Tommi K.</au><au>Moilanen, Antti J.</au><au>Väkeväinen, Aaro I.</au><au>Guo, Rui</au><au>Martikainen, Jani-Petri</au><au>Daskalakis, Konstantinos S.</au><au>Rekola, Heikki T.</au><au>Julku, Aleksi</au><au>Törmä, Päivi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bose–Einstein condensation in a plasmonic lattice</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>14</volume><issue>7</issue><spage>739</spage><epage>744</epage><pages>739-744</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Bose–Einstein condensation is a remarkable manifestation of quantum statistics and macroscopic quantum coherence. Superconductivity and superfluidity have their origin in Bose–Einstein condensation. Ultracold quantum gases have provided condensates close to the original ideas of Bose and Einstein, while condensation of polaritons and magnons has introduced novel concepts of non-equilibrium condensation. Here, we demonstrate a Bose–Einstein condensate of surface plasmon polaritons in lattice modes of a metal nanoparticle array. Interaction of the nanoscale-confined surface plasmons with a room-temperature bath of dye molecules enables thermalization and condensation in picoseconds. The ultrafast thermalization and condensation dynamics are revealed by an experiment that exploits thermalization under propagation and the open-cavity character of the system. A crossover from a Bose–Einstein condensate to usual lasing is realized by tailoring the band structure. This new condensate of surface plasmon lattice excitations has promise for future technologies due to its ultrafast, room-temperature and on-chip nature.
Surface plasmon polaritons in an array of metallic nanoparticles evolve quickly into the band minimum by interacting with a molecule bath, forming a Bose–Einstein condensate at room temperature within picoseconds.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-018-0109-9</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3996-5219</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2018-07, Vol.14 (7), p.739-744 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_2067108551 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 132/124 140/125 639/624/400 639/766/119 639/766/119/2791 639/766/483 Atomic Bose-Einstein condensates Classical and Continuum Physics Coherence Complex Systems Condensates Condensation Condensed Matter Physics Energy Equilibrium Glass substrates Lasers Lattice vibration Magnons Mathematical and Computational Physics Molecular Molecular chains Nanoparticles Optical and Plasma Physics Physics Physics and Astronomy Plasmons Polaritons Population Quantum phenomena Quantum statistics Superconductivity Superfluidity Theoretical Thermalization (energy absorption) |
title | Bose–Einstein condensation in a plasmonic lattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bose%E2%80%93Einstein%20condensation%20in%20a%20plasmonic%20lattice&rft.jtitle=Nature%20physics&rft.au=Hakala,%20Tommi%20K.&rft.date=2018-07-01&rft.volume=14&rft.issue=7&rft.spage=739&rft.epage=744&rft.pages=739-744&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-018-0109-9&rft_dat=%3Cproquest_sprin%3E2067108551%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2067108551&rft_id=info:pmid/&rfr_iscdi=true |