Bose–Einstein condensation in a plasmonic lattice

Bose–Einstein condensation is a remarkable manifestation of quantum statistics and macroscopic quantum coherence. Superconductivity and superfluidity have their origin in Bose–Einstein condensation. Ultracold quantum gases have provided condensates close to the original ideas of Bose and Einstein, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2018-07, Vol.14 (7), p.739-744
Hauptverfasser: Hakala, Tommi K., Moilanen, Antti J., Väkeväinen, Aaro I., Guo, Rui, Martikainen, Jani-Petri, Daskalakis, Konstantinos S., Rekola, Heikki T., Julku, Aleksi, Törmä, Päivi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 744
container_issue 7
container_start_page 739
container_title Nature physics
container_volume 14
creator Hakala, Tommi K.
Moilanen, Antti J.
Väkeväinen, Aaro I.
Guo, Rui
Martikainen, Jani-Petri
Daskalakis, Konstantinos S.
Rekola, Heikki T.
Julku, Aleksi
Törmä, Päivi
description Bose–Einstein condensation is a remarkable manifestation of quantum statistics and macroscopic quantum coherence. Superconductivity and superfluidity have their origin in Bose–Einstein condensation. Ultracold quantum gases have provided condensates close to the original ideas of Bose and Einstein, while condensation of polaritons and magnons has introduced novel concepts of non-equilibrium condensation. Here, we demonstrate a Bose–Einstein condensate of surface plasmon polaritons in lattice modes of a metal nanoparticle array. Interaction of the nanoscale-confined surface plasmons with a room-temperature bath of dye molecules enables thermalization and condensation in picoseconds. The ultrafast thermalization and condensation dynamics are revealed by an experiment that exploits thermalization under propagation and the open-cavity character of the system. A crossover from a Bose–Einstein condensate to usual lasing is realized by tailoring the band structure. This new condensate of surface plasmon lattice excitations has promise for future technologies due to its ultrafast, room-temperature and on-chip nature. Surface plasmon polaritons in an array of metallic nanoparticles evolve quickly into the band minimum by interacting with a molecule bath, forming a Bose–Einstein condensate at room temperature within picoseconds.
doi_str_mv 10.1038/s41567-018-0109-9
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2067108551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067108551</sourcerecordid><originalsourceid>FETCH-LOGICAL-p226t-c19947a2b5b6d642e04702fade978cb1bcac3d7eaffe5048d68a10e0f387e1f73</originalsourceid><addsrcrecordid>eNpFkMtKxEAQRRtRcBz9AHcB161V_c5Sh_EBA2503XQ6FckQOzGd2fsP_qFfYoYRXRRVBYd74TB2iXCNIN1NVqiN5YBuHih5ecQWaJXmQjk8_rutPGVnOW8BlDAoF0ze9Zm-P7_WbcoTtamIfaop5TC1fSrmPxRDF_J7n9pYdGGa2kjn7KQJXaaL371kr_frl9Uj3zw_PK1uN3wQwkw8YlkqG0SlK1MbJQiUBdGEmkrrYoVVDFHWlkLTkAblauMCAkEjnSVsrFyyq0PuMPYfO8qT3_a7Mc2VXoCxCE5rnClxoPIwtumNxn8Kwe_l-IMcP8vxezm-lD97sFgZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067108551</pqid></control><display><type>article</type><title>Bose–Einstein condensation in a plasmonic lattice</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Hakala, Tommi K. ; Moilanen, Antti J. ; Väkeväinen, Aaro I. ; Guo, Rui ; Martikainen, Jani-Petri ; Daskalakis, Konstantinos S. ; Rekola, Heikki T. ; Julku, Aleksi ; Törmä, Päivi</creator><creatorcontrib>Hakala, Tommi K. ; Moilanen, Antti J. ; Väkeväinen, Aaro I. ; Guo, Rui ; Martikainen, Jani-Petri ; Daskalakis, Konstantinos S. ; Rekola, Heikki T. ; Julku, Aleksi ; Törmä, Päivi</creatorcontrib><description>Bose–Einstein condensation is a remarkable manifestation of quantum statistics and macroscopic quantum coherence. Superconductivity and superfluidity have their origin in Bose–Einstein condensation. Ultracold quantum gases have provided condensates close to the original ideas of Bose and Einstein, while condensation of polaritons and magnons has introduced novel concepts of non-equilibrium condensation. Here, we demonstrate a Bose–Einstein condensate of surface plasmon polaritons in lattice modes of a metal nanoparticle array. Interaction of the nanoscale-confined surface plasmons with a room-temperature bath of dye molecules enables thermalization and condensation in picoseconds. The ultrafast thermalization and condensation dynamics are revealed by an experiment that exploits thermalization under propagation and the open-cavity character of the system. A crossover from a Bose–Einstein condensate to usual lasing is realized by tailoring the band structure. This new condensate of surface plasmon lattice excitations has promise for future technologies due to its ultrafast, room-temperature and on-chip nature. Surface plasmon polaritons in an array of metallic nanoparticles evolve quickly into the band minimum by interacting with a molecule bath, forming a Bose–Einstein condensate at room temperature within picoseconds.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-018-0109-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>132/124 ; 140/125 ; 639/624/400 ; 639/766/119 ; 639/766/119/2791 ; 639/766/483 ; Atomic ; Bose-Einstein condensates ; Classical and Continuum Physics ; Coherence ; Complex Systems ; Condensates ; Condensation ; Condensed Matter Physics ; Energy ; Equilibrium ; Glass substrates ; Lasers ; Lattice vibration ; Magnons ; Mathematical and Computational Physics ; Molecular ; Molecular chains ; Nanoparticles ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Plasmons ; Polaritons ; Population ; Quantum phenomena ; Quantum statistics ; Superconductivity ; Superfluidity ; Theoretical ; Thermalization (energy absorption)</subject><ispartof>Nature physics, 2018-07, Vol.14 (7), p.739-744</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Jul 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3996-5219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-018-0109-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-018-0109-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hakala, Tommi K.</creatorcontrib><creatorcontrib>Moilanen, Antti J.</creatorcontrib><creatorcontrib>Väkeväinen, Aaro I.</creatorcontrib><creatorcontrib>Guo, Rui</creatorcontrib><creatorcontrib>Martikainen, Jani-Petri</creatorcontrib><creatorcontrib>Daskalakis, Konstantinos S.</creatorcontrib><creatorcontrib>Rekola, Heikki T.</creatorcontrib><creatorcontrib>Julku, Aleksi</creatorcontrib><creatorcontrib>Törmä, Päivi</creatorcontrib><title>Bose–Einstein condensation in a plasmonic lattice</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Bose–Einstein condensation is a remarkable manifestation of quantum statistics and macroscopic quantum coherence. Superconductivity and superfluidity have their origin in Bose–Einstein condensation. Ultracold quantum gases have provided condensates close to the original ideas of Bose and Einstein, while condensation of polaritons and magnons has introduced novel concepts of non-equilibrium condensation. Here, we demonstrate a Bose–Einstein condensate of surface plasmon polaritons in lattice modes of a metal nanoparticle array. Interaction of the nanoscale-confined surface plasmons with a room-temperature bath of dye molecules enables thermalization and condensation in picoseconds. The ultrafast thermalization and condensation dynamics are revealed by an experiment that exploits thermalization under propagation and the open-cavity character of the system. A crossover from a Bose–Einstein condensate to usual lasing is realized by tailoring the band structure. This new condensate of surface plasmon lattice excitations has promise for future technologies due to its ultrafast, room-temperature and on-chip nature. Surface plasmon polaritons in an array of metallic nanoparticles evolve quickly into the band minimum by interacting with a molecule bath, forming a Bose–Einstein condensate at room temperature within picoseconds.</description><subject>132/124</subject><subject>140/125</subject><subject>639/624/400</subject><subject>639/766/119</subject><subject>639/766/119/2791</subject><subject>639/766/483</subject><subject>Atomic</subject><subject>Bose-Einstein condensates</subject><subject>Classical and Continuum Physics</subject><subject>Coherence</subject><subject>Complex Systems</subject><subject>Condensates</subject><subject>Condensation</subject><subject>Condensed Matter Physics</subject><subject>Energy</subject><subject>Equilibrium</subject><subject>Glass substrates</subject><subject>Lasers</subject><subject>Lattice vibration</subject><subject>Magnons</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Molecular chains</subject><subject>Nanoparticles</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasmons</subject><subject>Polaritons</subject><subject>Population</subject><subject>Quantum phenomena</subject><subject>Quantum statistics</subject><subject>Superconductivity</subject><subject>Superfluidity</subject><subject>Theoretical</subject><subject>Thermalization (energy absorption)</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFkMtKxEAQRRtRcBz9AHcB161V_c5Sh_EBA2503XQ6FckQOzGd2fsP_qFfYoYRXRRVBYd74TB2iXCNIN1NVqiN5YBuHih5ecQWaJXmQjk8_rutPGVnOW8BlDAoF0ze9Zm-P7_WbcoTtamIfaop5TC1fSrmPxRDF_J7n9pYdGGa2kjn7KQJXaaL371kr_frl9Uj3zw_PK1uN3wQwkw8YlkqG0SlK1MbJQiUBdGEmkrrYoVVDFHWlkLTkAblauMCAkEjnSVsrFyyq0PuMPYfO8qT3_a7Mc2VXoCxCE5rnClxoPIwtumNxn8Kwe_l-IMcP8vxezm-lD97sFgZ</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Hakala, Tommi K.</creator><creator>Moilanen, Antti J.</creator><creator>Väkeväinen, Aaro I.</creator><creator>Guo, Rui</creator><creator>Martikainen, Jani-Petri</creator><creator>Daskalakis, Konstantinos S.</creator><creator>Rekola, Heikki T.</creator><creator>Julku, Aleksi</creator><creator>Törmä, Päivi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3996-5219</orcidid></search><sort><creationdate>20180701</creationdate><title>Bose–Einstein condensation in a plasmonic lattice</title><author>Hakala, Tommi K. ; Moilanen, Antti J. ; Väkeväinen, Aaro I. ; Guo, Rui ; Martikainen, Jani-Petri ; Daskalakis, Konstantinos S. ; Rekola, Heikki T. ; Julku, Aleksi ; Törmä, Päivi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p226t-c19947a2b5b6d642e04702fade978cb1bcac3d7eaffe5048d68a10e0f387e1f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>132/124</topic><topic>140/125</topic><topic>639/624/400</topic><topic>639/766/119</topic><topic>639/766/119/2791</topic><topic>639/766/483</topic><topic>Atomic</topic><topic>Bose-Einstein condensates</topic><topic>Classical and Continuum Physics</topic><topic>Coherence</topic><topic>Complex Systems</topic><topic>Condensates</topic><topic>Condensation</topic><topic>Condensed Matter Physics</topic><topic>Energy</topic><topic>Equilibrium</topic><topic>Glass substrates</topic><topic>Lasers</topic><topic>Lattice vibration</topic><topic>Magnons</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Molecular chains</topic><topic>Nanoparticles</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasmons</topic><topic>Polaritons</topic><topic>Population</topic><topic>Quantum phenomena</topic><topic>Quantum statistics</topic><topic>Superconductivity</topic><topic>Superfluidity</topic><topic>Theoretical</topic><topic>Thermalization (energy absorption)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hakala, Tommi K.</creatorcontrib><creatorcontrib>Moilanen, Antti J.</creatorcontrib><creatorcontrib>Väkeväinen, Aaro I.</creatorcontrib><creatorcontrib>Guo, Rui</creatorcontrib><creatorcontrib>Martikainen, Jani-Petri</creatorcontrib><creatorcontrib>Daskalakis, Konstantinos S.</creatorcontrib><creatorcontrib>Rekola, Heikki T.</creatorcontrib><creatorcontrib>Julku, Aleksi</creatorcontrib><creatorcontrib>Törmä, Päivi</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hakala, Tommi K.</au><au>Moilanen, Antti J.</au><au>Väkeväinen, Aaro I.</au><au>Guo, Rui</au><au>Martikainen, Jani-Petri</au><au>Daskalakis, Konstantinos S.</au><au>Rekola, Heikki T.</au><au>Julku, Aleksi</au><au>Törmä, Päivi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bose–Einstein condensation in a plasmonic lattice</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>14</volume><issue>7</issue><spage>739</spage><epage>744</epage><pages>739-744</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Bose–Einstein condensation is a remarkable manifestation of quantum statistics and macroscopic quantum coherence. Superconductivity and superfluidity have their origin in Bose–Einstein condensation. Ultracold quantum gases have provided condensates close to the original ideas of Bose and Einstein, while condensation of polaritons and magnons has introduced novel concepts of non-equilibrium condensation. Here, we demonstrate a Bose–Einstein condensate of surface plasmon polaritons in lattice modes of a metal nanoparticle array. Interaction of the nanoscale-confined surface plasmons with a room-temperature bath of dye molecules enables thermalization and condensation in picoseconds. The ultrafast thermalization and condensation dynamics are revealed by an experiment that exploits thermalization under propagation and the open-cavity character of the system. A crossover from a Bose–Einstein condensate to usual lasing is realized by tailoring the band structure. This new condensate of surface plasmon lattice excitations has promise for future technologies due to its ultrafast, room-temperature and on-chip nature. Surface plasmon polaritons in an array of metallic nanoparticles evolve quickly into the band minimum by interacting with a molecule bath, forming a Bose–Einstein condensate at room temperature within picoseconds.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-018-0109-9</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3996-5219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2018-07, Vol.14 (7), p.739-744
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2067108551
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 132/124
140/125
639/624/400
639/766/119
639/766/119/2791
639/766/483
Atomic
Bose-Einstein condensates
Classical and Continuum Physics
Coherence
Complex Systems
Condensates
Condensation
Condensed Matter Physics
Energy
Equilibrium
Glass substrates
Lasers
Lattice vibration
Magnons
Mathematical and Computational Physics
Molecular
Molecular chains
Nanoparticles
Optical and Plasma Physics
Physics
Physics and Astronomy
Plasmons
Polaritons
Population
Quantum phenomena
Quantum statistics
Superconductivity
Superfluidity
Theoretical
Thermalization (energy absorption)
title Bose–Einstein condensation in a plasmonic lattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A14%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bose%E2%80%93Einstein%20condensation%20in%20a%20plasmonic%20lattice&rft.jtitle=Nature%20physics&rft.au=Hakala,%20Tommi%20K.&rft.date=2018-07-01&rft.volume=14&rft.issue=7&rft.spage=739&rft.epage=744&rft.pages=739-744&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-018-0109-9&rft_dat=%3Cproquest_sprin%3E2067108551%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2067108551&rft_id=info:pmid/&rfr_iscdi=true