Distributed Modeling of Layout Parasitics in Large-Area High-Speed Silicon Power Devices

This paper reports a technique for generating a lumped-element distributed model for silicon power devices that takes into account the effect of layout parasitics. The proposed methodology exploits the high-frequency modeling approach of microstrips and striplines to describe both the passive parts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2007-09, Vol.22 (5), p.1847-1856
Hauptverfasser: Biondi, T., Greco, G., Allia, M.C., Liotta, S.F., Bazzano, G., Rinaudo, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1856
container_issue 5
container_start_page 1847
container_title IEEE transactions on power electronics
container_volume 22
creator Biondi, T.
Greco, G.
Allia, M.C.
Liotta, S.F.
Bazzano, G.
Rinaudo, S.
description This paper reports a technique for generating a lumped-element distributed model for silicon power devices that takes into account the effect of layout parasitics. The proposed methodology exploits the high-frequency modeling approach of microstrips and striplines to describe both the passive parts of the device and elementary transistor cells. A semi-empirical model for the elementary transistor cells of the power device is also proposed. Parameter extraction is described and validated by direct comparison with device simulations of an actual device. The proposed modeling approach is employed to investigate the internal current distribution of a high-voltage silicon power MOSFET supplied by STMicroelectronics during the turnoff transient. The tradeoff that must be accomplished between accuracy and complexity is discussed. The effect of increased switching frequency on the device current distribution is also reported explaining how it may lead to performance degradation and device failure.
doi_str_mv 10.1109/TPEL.2007.904241
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_206692317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4300858</ieee_id><sourcerecordid>880662471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-bd6d988cbbed87ce599f54d47c3aedcd1cbd6e4a4200b4832b594fca71e881363</originalsourceid><addsrcrecordid>eNqFkcFLHDEUxkNR6Gp7L_QyCNrTbN-bZGaSo6xaCytd0EJvIZN5s0bGyZrMKP73Zlmp0EM9BV5-3wcfP8a-IMwRQX2_WZ0v5wVAPVcgCoEf2AyVwBwQ6j02AynLXCrFP7KDGO8AUJSAM_bnzMUxuGYaqc2ufEu9G9aZ77KlefbTmK1MMNGNzsbMDekY1pSfBjLZpVvf5tcbSrFr1zvrh2zlnyhkZ_ToLMVPbL8zfaTPr-8h-31xfrO4zJe_fvxcnC5zK7Ac86atWiWlbRpqZW2pVKorRStqyw21tkWbCBJGpGmNkLxoSiU6a2okKZFX_JB92_Vugn-YKI763kVLfW8G8lPUCniFUqboe6SUUFWFqDGRJ_8luRCgKl4k8Ogf8M5PYUh7dZHKVMGxThDsIBt8jIE6vQnu3oRnjaC37vTWnd660zt3KXL82muiNX0XzGBdfMspkLWqtuO_7jhHRH-_BQeQpeQvTyOhGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206692317</pqid></control><display><type>article</type><title>Distributed Modeling of Layout Parasitics in Large-Area High-Speed Silicon Power Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Biondi, T. ; Greco, G. ; Allia, M.C. ; Liotta, S.F. ; Bazzano, G. ; Rinaudo, S.</creator><creatorcontrib>Biondi, T. ; Greco, G. ; Allia, M.C. ; Liotta, S.F. ; Bazzano, G. ; Rinaudo, S.</creatorcontrib><description>This paper reports a technique for generating a lumped-element distributed model for silicon power devices that takes into account the effect of layout parasitics. The proposed methodology exploits the high-frequency modeling approach of microstrips and striplines to describe both the passive parts of the device and elementary transistor cells. A semi-empirical model for the elementary transistor cells of the power device is also proposed. Parameter extraction is described and validated by direct comparison with device simulations of an actual device. The proposed modeling approach is employed to investigate the internal current distribution of a high-voltage silicon power MOSFET supplied by STMicroelectronics during the turnoff transient. The tradeoff that must be accomplished between accuracy and complexity is discussed. The effect of increased switching frequency on the device current distribution is also reported explaining how it may lead to performance degradation and device failure.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2007.904241</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Current distribution ; Devices ; Distributed control ; Distributed modeling ; Distributed power generation ; Electric currents ; Electrical engineering ; Electrical engineering. Electrical power engineering ; Electronic equipment and fabrication. Passive components, printed wiring boards, connectics ; Electronics ; Exact sciences and technology ; Failure ; Frequencies ; high-speed ; layout parasitics ; Mathematical models ; Microstrip components ; MOSFET circuits ; Other multijunction devices. Power transistors. Thyristors ; Parameter extraction ; power devices ; Power electronics, power supplies ; Power generation ; Power MOSFET ; Semiconductor devices ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; silicon technology ; Stripline ; Transistors</subject><ispartof>IEEE transactions on power electronics, 2007-09, Vol.22 (5), p.1847-1856</ispartof><rights>2007 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-bd6d988cbbed87ce599f54d47c3aedcd1cbd6e4a4200b4832b594fca71e881363</citedby><cites>FETCH-LOGICAL-c415t-bd6d988cbbed87ce599f54d47c3aedcd1cbd6e4a4200b4832b594fca71e881363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4300858$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4300858$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19087966$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Biondi, T.</creatorcontrib><creatorcontrib>Greco, G.</creatorcontrib><creatorcontrib>Allia, M.C.</creatorcontrib><creatorcontrib>Liotta, S.F.</creatorcontrib><creatorcontrib>Bazzano, G.</creatorcontrib><creatorcontrib>Rinaudo, S.</creatorcontrib><title>Distributed Modeling of Layout Parasitics in Large-Area High-Speed Silicon Power Devices</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This paper reports a technique for generating a lumped-element distributed model for silicon power devices that takes into account the effect of layout parasitics. The proposed methodology exploits the high-frequency modeling approach of microstrips and striplines to describe both the passive parts of the device and elementary transistor cells. A semi-empirical model for the elementary transistor cells of the power device is also proposed. Parameter extraction is described and validated by direct comparison with device simulations of an actual device. The proposed modeling approach is employed to investigate the internal current distribution of a high-voltage silicon power MOSFET supplied by STMicroelectronics during the turnoff transient. The tradeoff that must be accomplished between accuracy and complexity is discussed. The effect of increased switching frequency on the device current distribution is also reported explaining how it may lead to performance degradation and device failure.</description><subject>Applied sciences</subject><subject>Current distribution</subject><subject>Devices</subject><subject>Distributed control</subject><subject>Distributed modeling</subject><subject>Distributed power generation</subject><subject>Electric currents</subject><subject>Electrical engineering</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Frequencies</subject><subject>high-speed</subject><subject>layout parasitics</subject><subject>Mathematical models</subject><subject>Microstrip components</subject><subject>MOSFET circuits</subject><subject>Other multijunction devices. Power transistors. Thyristors</subject><subject>Parameter extraction</subject><subject>power devices</subject><subject>Power electronics, power supplies</subject><subject>Power generation</subject><subject>Power MOSFET</subject><subject>Semiconductor devices</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>silicon technology</subject><subject>Stripline</subject><subject>Transistors</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkcFLHDEUxkNR6Gp7L_QyCNrTbN-bZGaSo6xaCytd0EJvIZN5s0bGyZrMKP73Zlmp0EM9BV5-3wcfP8a-IMwRQX2_WZ0v5wVAPVcgCoEf2AyVwBwQ6j02AynLXCrFP7KDGO8AUJSAM_bnzMUxuGYaqc2ufEu9G9aZ77KlefbTmK1MMNGNzsbMDekY1pSfBjLZpVvf5tcbSrFr1zvrh2zlnyhkZ_ToLMVPbL8zfaTPr-8h-31xfrO4zJe_fvxcnC5zK7Ac86atWiWlbRpqZW2pVKorRStqyw21tkWbCBJGpGmNkLxoSiU6a2okKZFX_JB92_Vugn-YKI763kVLfW8G8lPUCniFUqboe6SUUFWFqDGRJ_8luRCgKl4k8Ogf8M5PYUh7dZHKVMGxThDsIBt8jIE6vQnu3oRnjaC37vTWnd660zt3KXL82muiNX0XzGBdfMspkLWqtuO_7jhHRH-_BQeQpeQvTyOhGw</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Biondi, T.</creator><creator>Greco, G.</creator><creator>Allia, M.C.</creator><creator>Liotta, S.F.</creator><creator>Bazzano, G.</creator><creator>Rinaudo, S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20070901</creationdate><title>Distributed Modeling of Layout Parasitics in Large-Area High-Speed Silicon Power Devices</title><author>Biondi, T. ; Greco, G. ; Allia, M.C. ; Liotta, S.F. ; Bazzano, G. ; Rinaudo, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-bd6d988cbbed87ce599f54d47c3aedcd1cbd6e4a4200b4832b594fca71e881363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Current distribution</topic><topic>Devices</topic><topic>Distributed control</topic><topic>Distributed modeling</topic><topic>Distributed power generation</topic><topic>Electric currents</topic><topic>Electrical engineering</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electronic equipment and fabrication. Passive components, printed wiring boards, connectics</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Frequencies</topic><topic>high-speed</topic><topic>layout parasitics</topic><topic>Mathematical models</topic><topic>Microstrip components</topic><topic>MOSFET circuits</topic><topic>Other multijunction devices. Power transistors. Thyristors</topic><topic>Parameter extraction</topic><topic>power devices</topic><topic>Power electronics, power supplies</topic><topic>Power generation</topic><topic>Power MOSFET</topic><topic>Semiconductor devices</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>silicon technology</topic><topic>Stripline</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biondi, T.</creatorcontrib><creatorcontrib>Greco, G.</creatorcontrib><creatorcontrib>Allia, M.C.</creatorcontrib><creatorcontrib>Liotta, S.F.</creatorcontrib><creatorcontrib>Bazzano, G.</creatorcontrib><creatorcontrib>Rinaudo, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Biondi, T.</au><au>Greco, G.</au><au>Allia, M.C.</au><au>Liotta, S.F.</au><au>Bazzano, G.</au><au>Rinaudo, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Modeling of Layout Parasitics in Large-Area High-Speed Silicon Power Devices</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2007-09-01</date><risdate>2007</risdate><volume>22</volume><issue>5</issue><spage>1847</spage><epage>1856</epage><pages>1847-1856</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>This paper reports a technique for generating a lumped-element distributed model for silicon power devices that takes into account the effect of layout parasitics. The proposed methodology exploits the high-frequency modeling approach of microstrips and striplines to describe both the passive parts of the device and elementary transistor cells. A semi-empirical model for the elementary transistor cells of the power device is also proposed. Parameter extraction is described and validated by direct comparison with device simulations of an actual device. The proposed modeling approach is employed to investigate the internal current distribution of a high-voltage silicon power MOSFET supplied by STMicroelectronics during the turnoff transient. The tradeoff that must be accomplished between accuracy and complexity is discussed. The effect of increased switching frequency on the device current distribution is also reported explaining how it may lead to performance degradation and device failure.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TPEL.2007.904241</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2007-09, Vol.22 (5), p.1847-1856
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_206692317
source IEEE Electronic Library (IEL)
subjects Applied sciences
Current distribution
Devices
Distributed control
Distributed modeling
Distributed power generation
Electric currents
Electrical engineering
Electrical engineering. Electrical power engineering
Electronic equipment and fabrication. Passive components, printed wiring boards, connectics
Electronics
Exact sciences and technology
Failure
Frequencies
high-speed
layout parasitics
Mathematical models
Microstrip components
MOSFET circuits
Other multijunction devices. Power transistors. Thyristors
Parameter extraction
power devices
Power electronics, power supplies
Power generation
Power MOSFET
Semiconductor devices
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon
silicon technology
Stripline
Transistors
title Distributed Modeling of Layout Parasitics in Large-Area High-Speed Silicon Power Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A13%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Modeling%20of%20Layout%20Parasitics%20in%20Large-Area%20High-Speed%20Silicon%20Power%20Devices&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Biondi,%20T.&rft.date=2007-09-01&rft.volume=22&rft.issue=5&rft.spage=1847&rft.epage=1856&rft.pages=1847-1856&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2007.904241&rft_dat=%3Cproquest_RIE%3E880662471%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206692317&rft_id=info:pmid/&rft_ieee_id=4300858&rfr_iscdi=true