Layered P2‐Type K0.65Fe0.5Mn0.5O2 Microspheres as Superior Cathode for High‐Energy Potassium‐Ion Batteries

Potassium‐ion batteries have been regarded as the potential alternatives to lithium‐ion batteries (LIBs) due to the low cost, earth abundance, and low potential of K (−2.936 vs standard hydrogen electrode (SHE)). However, the lack of low‐cost cathodes with high energy density and long cycle life alw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2018-07, Vol.28 (28), p.n/a
Hauptverfasser: Deng, Tao, Fan, Xiulin, Chen, Ji, Chen, Long, Luo, Chao, Zhou, Xiuquan, Yang, Junhe, Zheng, Shiyou, Wang, Chunsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 28
container_start_page
container_title Advanced functional materials
container_volume 28
creator Deng, Tao
Fan, Xiulin
Chen, Ji
Chen, Long
Luo, Chao
Zhou, Xiuquan
Yang, Junhe
Zheng, Shiyou
Wang, Chunsheng
description Potassium‐ion batteries have been regarded as the potential alternatives to lithium‐ion batteries (LIBs) due to the low cost, earth abundance, and low potential of K (−2.936 vs standard hydrogen electrode (SHE)). However, the lack of low‐cost cathodes with high energy density and long cycle life always limits its application. In this work, high‐energy layered P2‐type hierarchical K0.65Fe0.5Mn0.5O2 (P2‐KFMO) microspheres, assembled by the primary nanoparticles, are fabricated via a modified solvent‐thermal method. Benefiting from the unique microspheres with primary nanoparticles, the K+ intercalation/deintercalation kinetics of P2‐KFMO is greatly enhanced with a stabilized cathodic electrolyte interphase on the cathode. The P2‐KFMO microsphere presents a highly reversible potassium storage capacity of 151 mAh g−1 at 20 mA g−1, fast rate capability of 103 mAh g−1 at 100 mA g−1, and long cycling stability with 78% capacity retention after 350 cycles. A full cell with P2‐KFMO microspheres as cathode and hard carbon as anode is constructed, which exhibits long‐term cycling stability (>80% of retention after 100 cycles). The present high‐performance P2‐KFMO microsphere cathode synthesized using earth‐abundant elements provides a new cost‐effective alternative to LIBs for large‐scale energy storage. P2‐type K0.65Fe0.5Mn0.5O2 microspheres as high‐energy cathodes for K‐ion batteries are first fabricated via a scalable facile self‐templated method. They achieve high capacity (151 mAh g−1 at 20 mA g−1), fast rate capability, and stable long‐term cycling performance with 78% capacity retention after 350 cycles. This low‐cost K‐ion cathode with earth‐abundant elements provides a promising choice for the large‐scale energy storage.
doi_str_mv 10.1002/adfm.201800219
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2066471059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2066471059</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3369-4e3837f020368ec0d6c79ab55acaff20a6fbed5ea092068d1ec81262f287bb163</originalsourceid><addsrcrecordid>eNo9UMFOwkAU3BhNRPTqeRPPrW936bY9IoIQIZCIibfNtn2FEmjrbhvTm5_gN_olLsFweW_mZWZeMoTcM_AZAH_UWX7wObDIERZfkB6TTHoCeHR5xuzjmtxYuwNgYSgGPVLPdYcGM7riv98_665G-gq-DCYIfrAo3VhyuihSU9l664SWakvf2hpNURk60s22ypDmDk-LzdZFjEs0m46uqkZbW7QHd5pVJX3STeM8aG_JVa73Fu_-d5-8T8br0dSbL19mo-Hc2wghY2-AIhJhDhyEjDCFTKZhrJMg0KnOcw5a5glmAWqIOcgoY5hGjEue8yhMEiZFnzyccmtTfbZoG7WrWlO6l8oZ5CBkEMROFZ9UX8UeO1Wb4qBNpxioY6XqWKk6V6qGz5PFmYk_J4tuOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2066471059</pqid></control><display><type>article</type><title>Layered P2‐Type K0.65Fe0.5Mn0.5O2 Microspheres as Superior Cathode for High‐Energy Potassium‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Deng, Tao ; Fan, Xiulin ; Chen, Ji ; Chen, Long ; Luo, Chao ; Zhou, Xiuquan ; Yang, Junhe ; Zheng, Shiyou ; Wang, Chunsheng</creator><creatorcontrib>Deng, Tao ; Fan, Xiulin ; Chen, Ji ; Chen, Long ; Luo, Chao ; Zhou, Xiuquan ; Yang, Junhe ; Zheng, Shiyou ; Wang, Chunsheng</creatorcontrib><description>Potassium‐ion batteries have been regarded as the potential alternatives to lithium‐ion batteries (LIBs) due to the low cost, earth abundance, and low potential of K (−2.936 vs standard hydrogen electrode (SHE)). However, the lack of low‐cost cathodes with high energy density and long cycle life always limits its application. In this work, high‐energy layered P2‐type hierarchical K0.65Fe0.5Mn0.5O2 (P2‐KFMO) microspheres, assembled by the primary nanoparticles, are fabricated via a modified solvent‐thermal method. Benefiting from the unique microspheres with primary nanoparticles, the K+ intercalation/deintercalation kinetics of P2‐KFMO is greatly enhanced with a stabilized cathodic electrolyte interphase on the cathode. The P2‐KFMO microsphere presents a highly reversible potassium storage capacity of 151 mAh g−1 at 20 mA g−1, fast rate capability of 103 mAh g−1 at 100 mA g−1, and long cycling stability with 78% capacity retention after 350 cycles. A full cell with P2‐KFMO microspheres as cathode and hard carbon as anode is constructed, which exhibits long‐term cycling stability (&gt;80% of retention after 100 cycles). The present high‐performance P2‐KFMO microsphere cathode synthesized using earth‐abundant elements provides a new cost‐effective alternative to LIBs for large‐scale energy storage. P2‐type K0.65Fe0.5Mn0.5O2 microspheres as high‐energy cathodes for K‐ion batteries are first fabricated via a scalable facile self‐templated method. They achieve high capacity (151 mAh g−1 at 20 mA g−1), fast rate capability, and stable long‐term cycling performance with 78% capacity retention after 350 cycles. This low‐cost K‐ion cathode with earth‐abundant elements provides a promising choice for the large‐scale energy storage.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201800219</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Cycles ; earth‐abundant cathode materials ; Energy storage ; Flux density ; Hydrogen storage ; K0.65Fe0.5Mn0.5O2 ; layered transition‐metal oxides ; Lithium-ion batteries ; Materials science ; Microspheres ; Nanoparticles ; Potassium ; potassium‐ion batteries ; Rechargeable batteries ; Stability ; Storage capacity</subject><ispartof>Advanced functional materials, 2018-07, Vol.28 (28), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8626-6381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201800219$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201800219$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Fan, Xiulin</creatorcontrib><creatorcontrib>Chen, Ji</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Luo, Chao</creatorcontrib><creatorcontrib>Zhou, Xiuquan</creatorcontrib><creatorcontrib>Yang, Junhe</creatorcontrib><creatorcontrib>Zheng, Shiyou</creatorcontrib><creatorcontrib>Wang, Chunsheng</creatorcontrib><title>Layered P2‐Type K0.65Fe0.5Mn0.5O2 Microspheres as Superior Cathode for High‐Energy Potassium‐Ion Batteries</title><title>Advanced functional materials</title><description>Potassium‐ion batteries have been regarded as the potential alternatives to lithium‐ion batteries (LIBs) due to the low cost, earth abundance, and low potential of K (−2.936 vs standard hydrogen electrode (SHE)). However, the lack of low‐cost cathodes with high energy density and long cycle life always limits its application. In this work, high‐energy layered P2‐type hierarchical K0.65Fe0.5Mn0.5O2 (P2‐KFMO) microspheres, assembled by the primary nanoparticles, are fabricated via a modified solvent‐thermal method. Benefiting from the unique microspheres with primary nanoparticles, the K+ intercalation/deintercalation kinetics of P2‐KFMO is greatly enhanced with a stabilized cathodic electrolyte interphase on the cathode. The P2‐KFMO microsphere presents a highly reversible potassium storage capacity of 151 mAh g−1 at 20 mA g−1, fast rate capability of 103 mAh g−1 at 100 mA g−1, and long cycling stability with 78% capacity retention after 350 cycles. A full cell with P2‐KFMO microspheres as cathode and hard carbon as anode is constructed, which exhibits long‐term cycling stability (&gt;80% of retention after 100 cycles). The present high‐performance P2‐KFMO microsphere cathode synthesized using earth‐abundant elements provides a new cost‐effective alternative to LIBs for large‐scale energy storage. P2‐type K0.65Fe0.5Mn0.5O2 microspheres as high‐energy cathodes for K‐ion batteries are first fabricated via a scalable facile self‐templated method. They achieve high capacity (151 mAh g−1 at 20 mA g−1), fast rate capability, and stable long‐term cycling performance with 78% capacity retention after 350 cycles. This low‐cost K‐ion cathode with earth‐abundant elements provides a promising choice for the large‐scale energy storage.</description><subject>Cathodes</subject><subject>Cycles</subject><subject>earth‐abundant cathode materials</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Hydrogen storage</subject><subject>K0.65Fe0.5Mn0.5O2</subject><subject>layered transition‐metal oxides</subject><subject>Lithium-ion batteries</subject><subject>Materials science</subject><subject>Microspheres</subject><subject>Nanoparticles</subject><subject>Potassium</subject><subject>potassium‐ion batteries</subject><subject>Rechargeable batteries</subject><subject>Stability</subject><subject>Storage capacity</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9UMFOwkAU3BhNRPTqeRPPrW936bY9IoIQIZCIibfNtn2FEmjrbhvTm5_gN_olLsFweW_mZWZeMoTcM_AZAH_UWX7wObDIERZfkB6TTHoCeHR5xuzjmtxYuwNgYSgGPVLPdYcGM7riv98_665G-gq-DCYIfrAo3VhyuihSU9l664SWakvf2hpNURk60s22ypDmDk-LzdZFjEs0m46uqkZbW7QHd5pVJX3STeM8aG_JVa73Fu_-d5-8T8br0dSbL19mo-Hc2wghY2-AIhJhDhyEjDCFTKZhrJMg0KnOcw5a5glmAWqIOcgoY5hGjEue8yhMEiZFnzyccmtTfbZoG7WrWlO6l8oZ5CBkEMROFZ9UX8UeO1Wb4qBNpxioY6XqWKk6V6qGz5PFmYk_J4tuOw</recordid><startdate>20180711</startdate><enddate>20180711</enddate><creator>Deng, Tao</creator><creator>Fan, Xiulin</creator><creator>Chen, Ji</creator><creator>Chen, Long</creator><creator>Luo, Chao</creator><creator>Zhou, Xiuquan</creator><creator>Yang, Junhe</creator><creator>Zheng, Shiyou</creator><creator>Wang, Chunsheng</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8626-6381</orcidid></search><sort><creationdate>20180711</creationdate><title>Layered P2‐Type K0.65Fe0.5Mn0.5O2 Microspheres as Superior Cathode for High‐Energy Potassium‐Ion Batteries</title><author>Deng, Tao ; Fan, Xiulin ; Chen, Ji ; Chen, Long ; Luo, Chao ; Zhou, Xiuquan ; Yang, Junhe ; Zheng, Shiyou ; Wang, Chunsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3369-4e3837f020368ec0d6c79ab55acaff20a6fbed5ea092068d1ec81262f287bb163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cathodes</topic><topic>Cycles</topic><topic>earth‐abundant cathode materials</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Hydrogen storage</topic><topic>K0.65Fe0.5Mn0.5O2</topic><topic>layered transition‐metal oxides</topic><topic>Lithium-ion batteries</topic><topic>Materials science</topic><topic>Microspheres</topic><topic>Nanoparticles</topic><topic>Potassium</topic><topic>potassium‐ion batteries</topic><topic>Rechargeable batteries</topic><topic>Stability</topic><topic>Storage capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Fan, Xiulin</creatorcontrib><creatorcontrib>Chen, Ji</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Luo, Chao</creatorcontrib><creatorcontrib>Zhou, Xiuquan</creatorcontrib><creatorcontrib>Yang, Junhe</creatorcontrib><creatorcontrib>Zheng, Shiyou</creatorcontrib><creatorcontrib>Wang, Chunsheng</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Tao</au><au>Fan, Xiulin</au><au>Chen, Ji</au><au>Chen, Long</au><au>Luo, Chao</au><au>Zhou, Xiuquan</au><au>Yang, Junhe</au><au>Zheng, Shiyou</au><au>Wang, Chunsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layered P2‐Type K0.65Fe0.5Mn0.5O2 Microspheres as Superior Cathode for High‐Energy Potassium‐Ion Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2018-07-11</date><risdate>2018</risdate><volume>28</volume><issue>28</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Potassium‐ion batteries have been regarded as the potential alternatives to lithium‐ion batteries (LIBs) due to the low cost, earth abundance, and low potential of K (−2.936 vs standard hydrogen electrode (SHE)). However, the lack of low‐cost cathodes with high energy density and long cycle life always limits its application. In this work, high‐energy layered P2‐type hierarchical K0.65Fe0.5Mn0.5O2 (P2‐KFMO) microspheres, assembled by the primary nanoparticles, are fabricated via a modified solvent‐thermal method. Benefiting from the unique microspheres with primary nanoparticles, the K+ intercalation/deintercalation kinetics of P2‐KFMO is greatly enhanced with a stabilized cathodic electrolyte interphase on the cathode. The P2‐KFMO microsphere presents a highly reversible potassium storage capacity of 151 mAh g−1 at 20 mA g−1, fast rate capability of 103 mAh g−1 at 100 mA g−1, and long cycling stability with 78% capacity retention after 350 cycles. A full cell with P2‐KFMO microspheres as cathode and hard carbon as anode is constructed, which exhibits long‐term cycling stability (&gt;80% of retention after 100 cycles). The present high‐performance P2‐KFMO microsphere cathode synthesized using earth‐abundant elements provides a new cost‐effective alternative to LIBs for large‐scale energy storage. P2‐type K0.65Fe0.5Mn0.5O2 microspheres as high‐energy cathodes for K‐ion batteries are first fabricated via a scalable facile self‐templated method. They achieve high capacity (151 mAh g−1 at 20 mA g−1), fast rate capability, and stable long‐term cycling performance with 78% capacity retention after 350 cycles. This low‐cost K‐ion cathode with earth‐abundant elements provides a promising choice for the large‐scale energy storage.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201800219</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8626-6381</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2018-07, Vol.28 (28), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2066471059
source Wiley Online Library Journals Frontfile Complete
subjects Cathodes
Cycles
earth‐abundant cathode materials
Energy storage
Flux density
Hydrogen storage
K0.65Fe0.5Mn0.5O2
layered transition‐metal oxides
Lithium-ion batteries
Materials science
Microspheres
Nanoparticles
Potassium
potassium‐ion batteries
Rechargeable batteries
Stability
Storage capacity
title Layered P2‐Type K0.65Fe0.5Mn0.5O2 Microspheres as Superior Cathode for High‐Energy Potassium‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T12%3A14%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layered%20P2%E2%80%90Type%20K0.65Fe0.5Mn0.5O2%20Microspheres%20as%20Superior%20Cathode%20for%20High%E2%80%90Energy%20Potassium%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Deng,%20Tao&rft.date=2018-07-11&rft.volume=28&rft.issue=28&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201800219&rft_dat=%3Cproquest_wiley%3E2066471059%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2066471059&rft_id=info:pmid/&rfr_iscdi=true