Layered P2‐Type K0.65Fe0.5Mn0.5O2 Microspheres as Superior Cathode for High‐Energy Potassium‐Ion Batteries
Potassium‐ion batteries have been regarded as the potential alternatives to lithium‐ion batteries (LIBs) due to the low cost, earth abundance, and low potential of K (−2.936 vs standard hydrogen electrode (SHE)). However, the lack of low‐cost cathodes with high energy density and long cycle life alw...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2018-07, Vol.28 (28), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 28 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 28 |
creator | Deng, Tao Fan, Xiulin Chen, Ji Chen, Long Luo, Chao Zhou, Xiuquan Yang, Junhe Zheng, Shiyou Wang, Chunsheng |
description | Potassium‐ion batteries have been regarded as the potential alternatives to lithium‐ion batteries (LIBs) due to the low cost, earth abundance, and low potential of K (−2.936 vs standard hydrogen electrode (SHE)). However, the lack of low‐cost cathodes with high energy density and long cycle life always limits its application. In this work, high‐energy layered P2‐type hierarchical K0.65Fe0.5Mn0.5O2 (P2‐KFMO) microspheres, assembled by the primary nanoparticles, are fabricated via a modified solvent‐thermal method. Benefiting from the unique microspheres with primary nanoparticles, the K+ intercalation/deintercalation kinetics of P2‐KFMO is greatly enhanced with a stabilized cathodic electrolyte interphase on the cathode. The P2‐KFMO microsphere presents a highly reversible potassium storage capacity of 151 mAh g−1 at 20 mA g−1, fast rate capability of 103 mAh g−1 at 100 mA g−1, and long cycling stability with 78% capacity retention after 350 cycles. A full cell with P2‐KFMO microspheres as cathode and hard carbon as anode is constructed, which exhibits long‐term cycling stability (>80% of retention after 100 cycles). The present high‐performance P2‐KFMO microsphere cathode synthesized using earth‐abundant elements provides a new cost‐effective alternative to LIBs for large‐scale energy storage.
P2‐type K0.65Fe0.5Mn0.5O2 microspheres as high‐energy cathodes for K‐ion batteries are first fabricated via a scalable facile self‐templated method. They achieve high capacity (151 mAh g−1 at 20 mA g−1), fast rate capability, and stable long‐term cycling performance with 78% capacity retention after 350 cycles. This low‐cost K‐ion cathode with earth‐abundant elements provides a promising choice for the large‐scale energy storage. |
doi_str_mv | 10.1002/adfm.201800219 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2066471059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2066471059</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3369-4e3837f020368ec0d6c79ab55acaff20a6fbed5ea092068d1ec81262f287bb163</originalsourceid><addsrcrecordid>eNo9UMFOwkAU3BhNRPTqeRPPrW936bY9IoIQIZCIibfNtn2FEmjrbhvTm5_gN_olLsFweW_mZWZeMoTcM_AZAH_UWX7wObDIERZfkB6TTHoCeHR5xuzjmtxYuwNgYSgGPVLPdYcGM7riv98_665G-gq-DCYIfrAo3VhyuihSU9l664SWakvf2hpNURk60s22ypDmDk-LzdZFjEs0m46uqkZbW7QHd5pVJX3STeM8aG_JVa73Fu_-d5-8T8br0dSbL19mo-Hc2wghY2-AIhJhDhyEjDCFTKZhrJMg0KnOcw5a5glmAWqIOcgoY5hGjEue8yhMEiZFnzyccmtTfbZoG7WrWlO6l8oZ5CBkEMROFZ9UX8UeO1Wb4qBNpxioY6XqWKk6V6qGz5PFmYk_J4tuOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2066471059</pqid></control><display><type>article</type><title>Layered P2‐Type K0.65Fe0.5Mn0.5O2 Microspheres as Superior Cathode for High‐Energy Potassium‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Deng, Tao ; Fan, Xiulin ; Chen, Ji ; Chen, Long ; Luo, Chao ; Zhou, Xiuquan ; Yang, Junhe ; Zheng, Shiyou ; Wang, Chunsheng</creator><creatorcontrib>Deng, Tao ; Fan, Xiulin ; Chen, Ji ; Chen, Long ; Luo, Chao ; Zhou, Xiuquan ; Yang, Junhe ; Zheng, Shiyou ; Wang, Chunsheng</creatorcontrib><description>Potassium‐ion batteries have been regarded as the potential alternatives to lithium‐ion batteries (LIBs) due to the low cost, earth abundance, and low potential of K (−2.936 vs standard hydrogen electrode (SHE)). However, the lack of low‐cost cathodes with high energy density and long cycle life always limits its application. In this work, high‐energy layered P2‐type hierarchical K0.65Fe0.5Mn0.5O2 (P2‐KFMO) microspheres, assembled by the primary nanoparticles, are fabricated via a modified solvent‐thermal method. Benefiting from the unique microspheres with primary nanoparticles, the K+ intercalation/deintercalation kinetics of P2‐KFMO is greatly enhanced with a stabilized cathodic electrolyte interphase on the cathode. The P2‐KFMO microsphere presents a highly reversible potassium storage capacity of 151 mAh g−1 at 20 mA g−1, fast rate capability of 103 mAh g−1 at 100 mA g−1, and long cycling stability with 78% capacity retention after 350 cycles. A full cell with P2‐KFMO microspheres as cathode and hard carbon as anode is constructed, which exhibits long‐term cycling stability (>80% of retention after 100 cycles). The present high‐performance P2‐KFMO microsphere cathode synthesized using earth‐abundant elements provides a new cost‐effective alternative to LIBs for large‐scale energy storage.
P2‐type K0.65Fe0.5Mn0.5O2 microspheres as high‐energy cathodes for K‐ion batteries are first fabricated via a scalable facile self‐templated method. They achieve high capacity (151 mAh g−1 at 20 mA g−1), fast rate capability, and stable long‐term cycling performance with 78% capacity retention after 350 cycles. This low‐cost K‐ion cathode with earth‐abundant elements provides a promising choice for the large‐scale energy storage.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201800219</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Cathodes ; Cycles ; earth‐abundant cathode materials ; Energy storage ; Flux density ; Hydrogen storage ; K0.65Fe0.5Mn0.5O2 ; layered transition‐metal oxides ; Lithium-ion batteries ; Materials science ; Microspheres ; Nanoparticles ; Potassium ; potassium‐ion batteries ; Rechargeable batteries ; Stability ; Storage capacity</subject><ispartof>Advanced functional materials, 2018-07, Vol.28 (28), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8626-6381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201800219$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201800219$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Fan, Xiulin</creatorcontrib><creatorcontrib>Chen, Ji</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Luo, Chao</creatorcontrib><creatorcontrib>Zhou, Xiuquan</creatorcontrib><creatorcontrib>Yang, Junhe</creatorcontrib><creatorcontrib>Zheng, Shiyou</creatorcontrib><creatorcontrib>Wang, Chunsheng</creatorcontrib><title>Layered P2‐Type K0.65Fe0.5Mn0.5O2 Microspheres as Superior Cathode for High‐Energy Potassium‐Ion Batteries</title><title>Advanced functional materials</title><description>Potassium‐ion batteries have been regarded as the potential alternatives to lithium‐ion batteries (LIBs) due to the low cost, earth abundance, and low potential of K (−2.936 vs standard hydrogen electrode (SHE)). However, the lack of low‐cost cathodes with high energy density and long cycle life always limits its application. In this work, high‐energy layered P2‐type hierarchical K0.65Fe0.5Mn0.5O2 (P2‐KFMO) microspheres, assembled by the primary nanoparticles, are fabricated via a modified solvent‐thermal method. Benefiting from the unique microspheres with primary nanoparticles, the K+ intercalation/deintercalation kinetics of P2‐KFMO is greatly enhanced with a stabilized cathodic electrolyte interphase on the cathode. The P2‐KFMO microsphere presents a highly reversible potassium storage capacity of 151 mAh g−1 at 20 mA g−1, fast rate capability of 103 mAh g−1 at 100 mA g−1, and long cycling stability with 78% capacity retention after 350 cycles. A full cell with P2‐KFMO microspheres as cathode and hard carbon as anode is constructed, which exhibits long‐term cycling stability (>80% of retention after 100 cycles). The present high‐performance P2‐KFMO microsphere cathode synthesized using earth‐abundant elements provides a new cost‐effective alternative to LIBs for large‐scale energy storage.
P2‐type K0.65Fe0.5Mn0.5O2 microspheres as high‐energy cathodes for K‐ion batteries are first fabricated via a scalable facile self‐templated method. They achieve high capacity (151 mAh g−1 at 20 mA g−1), fast rate capability, and stable long‐term cycling performance with 78% capacity retention after 350 cycles. This low‐cost K‐ion cathode with earth‐abundant elements provides a promising choice for the large‐scale energy storage.</description><subject>Cathodes</subject><subject>Cycles</subject><subject>earth‐abundant cathode materials</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Hydrogen storage</subject><subject>K0.65Fe0.5Mn0.5O2</subject><subject>layered transition‐metal oxides</subject><subject>Lithium-ion batteries</subject><subject>Materials science</subject><subject>Microspheres</subject><subject>Nanoparticles</subject><subject>Potassium</subject><subject>potassium‐ion batteries</subject><subject>Rechargeable batteries</subject><subject>Stability</subject><subject>Storage capacity</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9UMFOwkAU3BhNRPTqeRPPrW936bY9IoIQIZCIibfNtn2FEmjrbhvTm5_gN_olLsFweW_mZWZeMoTcM_AZAH_UWX7wObDIERZfkB6TTHoCeHR5xuzjmtxYuwNgYSgGPVLPdYcGM7riv98_665G-gq-DCYIfrAo3VhyuihSU9l664SWakvf2hpNURk60s22ypDmDk-LzdZFjEs0m46uqkZbW7QHd5pVJX3STeM8aG_JVa73Fu_-d5-8T8br0dSbL19mo-Hc2wghY2-AIhJhDhyEjDCFTKZhrJMg0KnOcw5a5glmAWqIOcgoY5hGjEue8yhMEiZFnzyccmtTfbZoG7WrWlO6l8oZ5CBkEMROFZ9UX8UeO1Wb4qBNpxioY6XqWKk6V6qGz5PFmYk_J4tuOw</recordid><startdate>20180711</startdate><enddate>20180711</enddate><creator>Deng, Tao</creator><creator>Fan, Xiulin</creator><creator>Chen, Ji</creator><creator>Chen, Long</creator><creator>Luo, Chao</creator><creator>Zhou, Xiuquan</creator><creator>Yang, Junhe</creator><creator>Zheng, Shiyou</creator><creator>Wang, Chunsheng</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8626-6381</orcidid></search><sort><creationdate>20180711</creationdate><title>Layered P2‐Type K0.65Fe0.5Mn0.5O2 Microspheres as Superior Cathode for High‐Energy Potassium‐Ion Batteries</title><author>Deng, Tao ; Fan, Xiulin ; Chen, Ji ; Chen, Long ; Luo, Chao ; Zhou, Xiuquan ; Yang, Junhe ; Zheng, Shiyou ; Wang, Chunsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3369-4e3837f020368ec0d6c79ab55acaff20a6fbed5ea092068d1ec81262f287bb163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cathodes</topic><topic>Cycles</topic><topic>earth‐abundant cathode materials</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Hydrogen storage</topic><topic>K0.65Fe0.5Mn0.5O2</topic><topic>layered transition‐metal oxides</topic><topic>Lithium-ion batteries</topic><topic>Materials science</topic><topic>Microspheres</topic><topic>Nanoparticles</topic><topic>Potassium</topic><topic>potassium‐ion batteries</topic><topic>Rechargeable batteries</topic><topic>Stability</topic><topic>Storage capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Fan, Xiulin</creatorcontrib><creatorcontrib>Chen, Ji</creatorcontrib><creatorcontrib>Chen, Long</creatorcontrib><creatorcontrib>Luo, Chao</creatorcontrib><creatorcontrib>Zhou, Xiuquan</creatorcontrib><creatorcontrib>Yang, Junhe</creatorcontrib><creatorcontrib>Zheng, Shiyou</creatorcontrib><creatorcontrib>Wang, Chunsheng</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Tao</au><au>Fan, Xiulin</au><au>Chen, Ji</au><au>Chen, Long</au><au>Luo, Chao</au><au>Zhou, Xiuquan</au><au>Yang, Junhe</au><au>Zheng, Shiyou</au><au>Wang, Chunsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Layered P2‐Type K0.65Fe0.5Mn0.5O2 Microspheres as Superior Cathode for High‐Energy Potassium‐Ion Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2018-07-11</date><risdate>2018</risdate><volume>28</volume><issue>28</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Potassium‐ion batteries have been regarded as the potential alternatives to lithium‐ion batteries (LIBs) due to the low cost, earth abundance, and low potential of K (−2.936 vs standard hydrogen electrode (SHE)). However, the lack of low‐cost cathodes with high energy density and long cycle life always limits its application. In this work, high‐energy layered P2‐type hierarchical K0.65Fe0.5Mn0.5O2 (P2‐KFMO) microspheres, assembled by the primary nanoparticles, are fabricated via a modified solvent‐thermal method. Benefiting from the unique microspheres with primary nanoparticles, the K+ intercalation/deintercalation kinetics of P2‐KFMO is greatly enhanced with a stabilized cathodic electrolyte interphase on the cathode. The P2‐KFMO microsphere presents a highly reversible potassium storage capacity of 151 mAh g−1 at 20 mA g−1, fast rate capability of 103 mAh g−1 at 100 mA g−1, and long cycling stability with 78% capacity retention after 350 cycles. A full cell with P2‐KFMO microspheres as cathode and hard carbon as anode is constructed, which exhibits long‐term cycling stability (>80% of retention after 100 cycles). The present high‐performance P2‐KFMO microsphere cathode synthesized using earth‐abundant elements provides a new cost‐effective alternative to LIBs for large‐scale energy storage.
P2‐type K0.65Fe0.5Mn0.5O2 microspheres as high‐energy cathodes for K‐ion batteries are first fabricated via a scalable facile self‐templated method. They achieve high capacity (151 mAh g−1 at 20 mA g−1), fast rate capability, and stable long‐term cycling performance with 78% capacity retention after 350 cycles. This low‐cost K‐ion cathode with earth‐abundant elements provides a promising choice for the large‐scale energy storage.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201800219</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8626-6381</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2018-07, Vol.28 (28), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2066471059 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Cathodes Cycles earth‐abundant cathode materials Energy storage Flux density Hydrogen storage K0.65Fe0.5Mn0.5O2 layered transition‐metal oxides Lithium-ion batteries Materials science Microspheres Nanoparticles Potassium potassium‐ion batteries Rechargeable batteries Stability Storage capacity |
title | Layered P2‐Type K0.65Fe0.5Mn0.5O2 Microspheres as Superior Cathode for High‐Energy Potassium‐Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T12%3A14%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Layered%20P2%E2%80%90Type%20K0.65Fe0.5Mn0.5O2%20Microspheres%20as%20Superior%20Cathode%20for%20High%E2%80%90Energy%20Potassium%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Deng,%20Tao&rft.date=2018-07-11&rft.volume=28&rft.issue=28&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201800219&rft_dat=%3Cproquest_wiley%3E2066471059%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2066471059&rft_id=info:pmid/&rfr_iscdi=true |