Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing

•Programmable poly(ethylene glycol) diacrylate hydrogel microstructures are fabricated by 3D printing of two-photon photopolymerization.•The controllable humidity-driven swelling ability is achieved by adjusting the crosslinking density of voxels in the microstructure.•Binary codes micropillar array...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2018-04, Vol.259, p.736-744
Hauptverfasser: Lv, Chao, Sun, Xiang-Chao, Xia, Hong, Yu, Yan-Hao, Wang, Gong, Cao, Xiao-Wen, Li, Shun-Xin, Wang, Ying-Shuai, Chen, Qi-Dai, Yu, Yu-De, Sun, Hong-Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 744
container_issue
container_start_page 736
container_title Sensors and actuators. B, Chemical
container_volume 259
creator Lv, Chao
Sun, Xiang-Chao
Xia, Hong
Yu, Yan-Hao
Wang, Gong
Cao, Xiao-Wen
Li, Shun-Xin
Wang, Ying-Shuai
Chen, Qi-Dai
Yu, Yu-De
Sun, Hong-Bo
description •Programmable poly(ethylene glycol) diacrylate hydrogel microstructures are fabricated by 3D printing of two-photon photopolymerization.•The controllable humidity-driven swelling ability is achieved by adjusting the crosslinking density of voxels in the microstructure.•Binary codes micropillar array for information encryption storage has been presented by a two-steps fabricating process. The design and fabrication of devices that based on adaptive soft matter with the autonomous transduction of environmental and field signals is an interesting area of material science and device engineering. Additive manufacturing, also known as 3D printing, has gained great attention as it allows the creation of complex 3D geometries with precisely prescribed microarchitectures, which enable new functionalities or improved performance. Here, we report on poly(ethylene glycol) diacrylate hydrogel microstructures with excellent humidity responsiveness by 3D printing of two-photon photopolymerization. The voxels of fabricated hydrogel microstructures have controllable crosslinking density because adjusting fabrication parameters, therefore controllable humidity-driven swelling ability can be achieved. Using the proper parameters, we present an array of microstructures which can realize the function of nano-interconnected network and a hydrogel microstructure with pores to mimic the open and close of the stomata of plants. Based on a flexible two-steps fabrication method and the combination of active and inert materials, binary encoding micropillar arrays and joint-like cantilever microstructure have been easily fabricated. The humidity-responsive actuation of hydrogel microstructures is repeatable and stable over 10000 cycles. This kind of composite hydrogel microstructures may lead to great promise for the diverse applications such as sensors, actuators or construction of soft robots.
doi_str_mv 10.1016/j.snb.2017.12.053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2066203376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400517323791</els_id><sourcerecordid>2066203376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-ee198518cb302cb97c0b3216751e648c51c16eebe4888747afd977af5fbd42b73</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewisU4YPxKnYoXKo0iV2MCKhWU7k-KoSYrtVOrf46qs2Xhk6Z6Zo0vILYWCAq3uuyIMpmBAZUFZASU_IzNaS55zkPKczGDBylwAlJfkKoQOAASvYEa-VlPvGhcPucewG4fg9phpGycd3ThkY5vt_Ljxuu-12WL2fWjSF7dZ76wfQ_RTiiYyMzpgkyWCPyXCDdENm2ty0eptwJu_OSefL88fy1W-fn99Wz6ucyuEiDkiXdQlra3hwKxZSAuGM1rJkmIlaltSSytEg6KuaymkbpuFTG_ZmkYwI_mc3J32JtWfCUNU3Tj5IZ1UDKqKAeeySil6Sh3Fg8dWJc9e-4OioI4dqk6lDtWxQ0WZSh0m5uHEYNLfO_QqWIeDxcZ5tFE1o_uH_gWH7HsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2066203376</pqid></control><display><type>article</type><title>Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lv, Chao ; Sun, Xiang-Chao ; Xia, Hong ; Yu, Yan-Hao ; Wang, Gong ; Cao, Xiao-Wen ; Li, Shun-Xin ; Wang, Ying-Shuai ; Chen, Qi-Dai ; Yu, Yu-De ; Sun, Hong-Bo</creator><creatorcontrib>Lv, Chao ; Sun, Xiang-Chao ; Xia, Hong ; Yu, Yan-Hao ; Wang, Gong ; Cao, Xiao-Wen ; Li, Shun-Xin ; Wang, Ying-Shuai ; Chen, Qi-Dai ; Yu, Yu-De ; Sun, Hong-Bo</creatorcontrib><description>•Programmable poly(ethylene glycol) diacrylate hydrogel microstructures are fabricated by 3D printing of two-photon photopolymerization.•The controllable humidity-driven swelling ability is achieved by adjusting the crosslinking density of voxels in the microstructure.•Binary codes micropillar array for information encryption storage has been presented by a two-steps fabricating process. The design and fabrication of devices that based on adaptive soft matter with the autonomous transduction of environmental and field signals is an interesting area of material science and device engineering. Additive manufacturing, also known as 3D printing, has gained great attention as it allows the creation of complex 3D geometries with precisely prescribed microarchitectures, which enable new functionalities or improved performance. Here, we report on poly(ethylene glycol) diacrylate hydrogel microstructures with excellent humidity responsiveness by 3D printing of two-photon photopolymerization. The voxels of fabricated hydrogel microstructures have controllable crosslinking density because adjusting fabrication parameters, therefore controllable humidity-driven swelling ability can be achieved. Using the proper parameters, we present an array of microstructures which can realize the function of nano-interconnected network and a hydrogel microstructure with pores to mimic the open and close of the stomata of plants. Based on a flexible two-steps fabrication method and the combination of active and inert materials, binary encoding micropillar arrays and joint-like cantilever microstructure have been easily fabricated. The humidity-responsive actuation of hydrogel microstructures is repeatable and stable over 10000 cycles. This kind of composite hydrogel microstructures may lead to great promise for the diverse applications such as sensors, actuators or construction of soft robots.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2017.12.053</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>3-D printers ; 3D printing ; Actuation ; Adaptive control ; Crosslinking ; Humidity ; Humidity-responsive ; Hydrogels ; Microstructure ; Parameters ; Photopolymerization ; Polyethylene glycol ; Programmable hydrogel microstructures ; Three dimensional printing</subject><ispartof>Sensors and actuators. B, Chemical, 2018-04, Vol.259, p.736-744</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-ee198518cb302cb97c0b3216751e648c51c16eebe4888747afd977af5fbd42b73</citedby><cites>FETCH-LOGICAL-c444t-ee198518cb302cb97c0b3216751e648c51c16eebe4888747afd977af5fbd42b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925400517323791$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Lv, Chao</creatorcontrib><creatorcontrib>Sun, Xiang-Chao</creatorcontrib><creatorcontrib>Xia, Hong</creatorcontrib><creatorcontrib>Yu, Yan-Hao</creatorcontrib><creatorcontrib>Wang, Gong</creatorcontrib><creatorcontrib>Cao, Xiao-Wen</creatorcontrib><creatorcontrib>Li, Shun-Xin</creatorcontrib><creatorcontrib>Wang, Ying-Shuai</creatorcontrib><creatorcontrib>Chen, Qi-Dai</creatorcontrib><creatorcontrib>Yu, Yu-De</creatorcontrib><creatorcontrib>Sun, Hong-Bo</creatorcontrib><title>Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing</title><title>Sensors and actuators. B, Chemical</title><description>•Programmable poly(ethylene glycol) diacrylate hydrogel microstructures are fabricated by 3D printing of two-photon photopolymerization.•The controllable humidity-driven swelling ability is achieved by adjusting the crosslinking density of voxels in the microstructure.•Binary codes micropillar array for information encryption storage has been presented by a two-steps fabricating process. The design and fabrication of devices that based on adaptive soft matter with the autonomous transduction of environmental and field signals is an interesting area of material science and device engineering. Additive manufacturing, also known as 3D printing, has gained great attention as it allows the creation of complex 3D geometries with precisely prescribed microarchitectures, which enable new functionalities or improved performance. Here, we report on poly(ethylene glycol) diacrylate hydrogel microstructures with excellent humidity responsiveness by 3D printing of two-photon photopolymerization. The voxels of fabricated hydrogel microstructures have controllable crosslinking density because adjusting fabrication parameters, therefore controllable humidity-driven swelling ability can be achieved. Using the proper parameters, we present an array of microstructures which can realize the function of nano-interconnected network and a hydrogel microstructure with pores to mimic the open and close of the stomata of plants. Based on a flexible two-steps fabrication method and the combination of active and inert materials, binary encoding micropillar arrays and joint-like cantilever microstructure have been easily fabricated. The humidity-responsive actuation of hydrogel microstructures is repeatable and stable over 10000 cycles. This kind of composite hydrogel microstructures may lead to great promise for the diverse applications such as sensors, actuators or construction of soft robots.</description><subject>3-D printers</subject><subject>3D printing</subject><subject>Actuation</subject><subject>Adaptive control</subject><subject>Crosslinking</subject><subject>Humidity</subject><subject>Humidity-responsive</subject><subject>Hydrogels</subject><subject>Microstructure</subject><subject>Parameters</subject><subject>Photopolymerization</subject><subject>Polyethylene glycol</subject><subject>Programmable hydrogel microstructures</subject><subject>Three dimensional printing</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewisU4YPxKnYoXKo0iV2MCKhWU7k-KoSYrtVOrf46qs2Xhk6Z6Zo0vILYWCAq3uuyIMpmBAZUFZASU_IzNaS55zkPKczGDBylwAlJfkKoQOAASvYEa-VlPvGhcPucewG4fg9phpGycd3ThkY5vt_Ljxuu-12WL2fWjSF7dZ76wfQ_RTiiYyMzpgkyWCPyXCDdENm2ty0eptwJu_OSefL88fy1W-fn99Wz6ucyuEiDkiXdQlra3hwKxZSAuGM1rJkmIlaltSSytEg6KuaymkbpuFTG_ZmkYwI_mc3J32JtWfCUNU3Tj5IZ1UDKqKAeeySil6Sh3Fg8dWJc9e-4OioI4dqk6lDtWxQ0WZSh0m5uHEYNLfO_QqWIeDxcZ5tFE1o_uH_gWH7HsY</recordid><startdate>20180415</startdate><enddate>20180415</enddate><creator>Lv, Chao</creator><creator>Sun, Xiang-Chao</creator><creator>Xia, Hong</creator><creator>Yu, Yan-Hao</creator><creator>Wang, Gong</creator><creator>Cao, Xiao-Wen</creator><creator>Li, Shun-Xin</creator><creator>Wang, Ying-Shuai</creator><creator>Chen, Qi-Dai</creator><creator>Yu, Yu-De</creator><creator>Sun, Hong-Bo</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180415</creationdate><title>Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing</title><author>Lv, Chao ; Sun, Xiang-Chao ; Xia, Hong ; Yu, Yan-Hao ; Wang, Gong ; Cao, Xiao-Wen ; Li, Shun-Xin ; Wang, Ying-Shuai ; Chen, Qi-Dai ; Yu, Yu-De ; Sun, Hong-Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-ee198518cb302cb97c0b3216751e648c51c16eebe4888747afd977af5fbd42b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3-D printers</topic><topic>3D printing</topic><topic>Actuation</topic><topic>Adaptive control</topic><topic>Crosslinking</topic><topic>Humidity</topic><topic>Humidity-responsive</topic><topic>Hydrogels</topic><topic>Microstructure</topic><topic>Parameters</topic><topic>Photopolymerization</topic><topic>Polyethylene glycol</topic><topic>Programmable hydrogel microstructures</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lv, Chao</creatorcontrib><creatorcontrib>Sun, Xiang-Chao</creatorcontrib><creatorcontrib>Xia, Hong</creatorcontrib><creatorcontrib>Yu, Yan-Hao</creatorcontrib><creatorcontrib>Wang, Gong</creatorcontrib><creatorcontrib>Cao, Xiao-Wen</creatorcontrib><creatorcontrib>Li, Shun-Xin</creatorcontrib><creatorcontrib>Wang, Ying-Shuai</creatorcontrib><creatorcontrib>Chen, Qi-Dai</creatorcontrib><creatorcontrib>Yu, Yu-De</creatorcontrib><creatorcontrib>Sun, Hong-Bo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lv, Chao</au><au>Sun, Xiang-Chao</au><au>Xia, Hong</au><au>Yu, Yan-Hao</au><au>Wang, Gong</au><au>Cao, Xiao-Wen</au><au>Li, Shun-Xin</au><au>Wang, Ying-Shuai</au><au>Chen, Qi-Dai</au><au>Yu, Yu-De</au><au>Sun, Hong-Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2018-04-15</date><risdate>2018</risdate><volume>259</volume><spage>736</spage><epage>744</epage><pages>736-744</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>•Programmable poly(ethylene glycol) diacrylate hydrogel microstructures are fabricated by 3D printing of two-photon photopolymerization.•The controllable humidity-driven swelling ability is achieved by adjusting the crosslinking density of voxels in the microstructure.•Binary codes micropillar array for information encryption storage has been presented by a two-steps fabricating process. The design and fabrication of devices that based on adaptive soft matter with the autonomous transduction of environmental and field signals is an interesting area of material science and device engineering. Additive manufacturing, also known as 3D printing, has gained great attention as it allows the creation of complex 3D geometries with precisely prescribed microarchitectures, which enable new functionalities or improved performance. Here, we report on poly(ethylene glycol) diacrylate hydrogel microstructures with excellent humidity responsiveness by 3D printing of two-photon photopolymerization. The voxels of fabricated hydrogel microstructures have controllable crosslinking density because adjusting fabrication parameters, therefore controllable humidity-driven swelling ability can be achieved. Using the proper parameters, we present an array of microstructures which can realize the function of nano-interconnected network and a hydrogel microstructure with pores to mimic the open and close of the stomata of plants. Based on a flexible two-steps fabrication method and the combination of active and inert materials, binary encoding micropillar arrays and joint-like cantilever microstructure have been easily fabricated. The humidity-responsive actuation of hydrogel microstructures is repeatable and stable over 10000 cycles. This kind of composite hydrogel microstructures may lead to great promise for the diverse applications such as sensors, actuators or construction of soft robots.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2017.12.053</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2018-04, Vol.259, p.736-744
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_journals_2066203376
source Elsevier ScienceDirect Journals Complete
subjects 3-D printers
3D printing
Actuation
Adaptive control
Crosslinking
Humidity
Humidity-responsive
Hydrogels
Microstructure
Parameters
Photopolymerization
Polyethylene glycol
Programmable hydrogel microstructures
Three dimensional printing
title Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Humidity-responsive%20actuation%20of%20programmable%20hydrogel%20microstructures%20based%20on%203D%20printing&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Lv,%20Chao&rft.date=2018-04-15&rft.volume=259&rft.spage=736&rft.epage=744&rft.pages=736-744&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2017.12.053&rft_dat=%3Cproquest_cross%3E2066203376%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2066203376&rft_id=info:pmid/&rft_els_id=S0925400517323791&rfr_iscdi=true