Lump solutions to a (2+1)-dimensional extended KP equation
With the aid of a computer algebra system, we present lump solutions to a (2+1)-dimensional extended Kadomtsev–Petviashvili equation (eKP) and give the sufficient and necessary conditions to guarantee analyticity and rational localization of the solutions. We plot a few solutions for some specific v...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2018-04, Vol.75 (7), p.2414-2419 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2419 |
---|---|
container_issue | 7 |
container_start_page | 2414 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 75 |
creator | Manukure, Solomon Zhou, Yuan Ma, Wen-Xiu |
description | With the aid of a computer algebra system, we present lump solutions to a (2+1)-dimensional extended Kadomtsev–Petviashvili equation (eKP) and give the sufficient and necessary conditions to guarantee analyticity and rational localization of the solutions. We plot a few solutions for some specific values of the free parameters involved and finally derive one of the lump solutions of the Kadomtsev–Petviashvili (KP) equations from the lump solutions of the eKP equation. |
doi_str_mv | 10.1016/j.camwa.2017.12.030 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2066202560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122117307939</els_id><sourcerecordid>2066202560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-160be82cf20406105daae1813acaec74af5299538533bf8b3c4e6bba5ef750d03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Ai8FL4q0ziRtmhU8yOIXLuhBzyFNptCybXeT1o9_b-t69jQwvM_LzMPYKUKCgPKqTqxpPk3CAfMEeQIC9tgMVS7iXEq1z2agFipGzvGQHYVQA0AqOMzY9WpoNlHo1kNfdW2I-i4y0Tm_xIvYVQ21YdyadURfPbWOXPT8GtF2MFP4mB2UZh3o5G_O2fv93dvyMV69PDwtb1exFbnsY5RQkOK25JCCRMicMYQKhbGGbJ6aMuOLRSZUJkRRqkLYlGRRmIzKPAMHYs7Odr0b320HCr2uu8GPVwXNQUoOPJNTSuxS1ncheCr1xleN8d8aQU-SdK1_JelJkkauR0kjdbOjaHzgoyKvg62oteQqT7bXrqv-5X8AWrNvBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2066202560</pqid></control><display><type>article</type><title>Lump solutions to a (2+1)-dimensional extended KP equation</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Manukure, Solomon ; Zhou, Yuan ; Ma, Wen-Xiu</creator><creatorcontrib>Manukure, Solomon ; Zhou, Yuan ; Ma, Wen-Xiu</creatorcontrib><description>With the aid of a computer algebra system, we present lump solutions to a (2+1)-dimensional extended Kadomtsev–Petviashvili equation (eKP) and give the sufficient and necessary conditions to guarantee analyticity and rational localization of the solutions. We plot a few solutions for some specific values of the free parameters involved and finally derive one of the lump solutions of the Kadomtsev–Petviashvili (KP) equations from the lump solutions of the eKP equation.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2017.12.030</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algebra ; Computer algebra ; Extended KP equation ; Hirota bilinear form ; Lump solutions ; Nonlinear equations ; Schrodinger equation</subject><ispartof>Computers & mathematics with applications (1987), 2018-04, Vol.75 (7), p.2414-2419</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-160be82cf20406105daae1813acaec74af5299538533bf8b3c4e6bba5ef750d03</citedby><cites>FETCH-LOGICAL-c376t-160be82cf20406105daae1813acaec74af5299538533bf8b3c4e6bba5ef750d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.camwa.2017.12.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Manukure, Solomon</creatorcontrib><creatorcontrib>Zhou, Yuan</creatorcontrib><creatorcontrib>Ma, Wen-Xiu</creatorcontrib><title>Lump solutions to a (2+1)-dimensional extended KP equation</title><title>Computers & mathematics with applications (1987)</title><description>With the aid of a computer algebra system, we present lump solutions to a (2+1)-dimensional extended Kadomtsev–Petviashvili equation (eKP) and give the sufficient and necessary conditions to guarantee analyticity and rational localization of the solutions. We plot a few solutions for some specific values of the free parameters involved and finally derive one of the lump solutions of the Kadomtsev–Petviashvili (KP) equations from the lump solutions of the eKP equation.</description><subject>Algebra</subject><subject>Computer algebra</subject><subject>Extended KP equation</subject><subject>Hirota bilinear form</subject><subject>Lump solutions</subject><subject>Nonlinear equations</subject><subject>Schrodinger equation</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Ai8FL4q0ziRtmhU8yOIXLuhBzyFNptCybXeT1o9_b-t69jQwvM_LzMPYKUKCgPKqTqxpPk3CAfMEeQIC9tgMVS7iXEq1z2agFipGzvGQHYVQA0AqOMzY9WpoNlHo1kNfdW2I-i4y0Tm_xIvYVQ21YdyadURfPbWOXPT8GtF2MFP4mB2UZh3o5G_O2fv93dvyMV69PDwtb1exFbnsY5RQkOK25JCCRMicMYQKhbGGbJ6aMuOLRSZUJkRRqkLYlGRRmIzKPAMHYs7Odr0b320HCr2uu8GPVwXNQUoOPJNTSuxS1ncheCr1xleN8d8aQU-SdK1_JelJkkauR0kjdbOjaHzgoyKvg62oteQqT7bXrqv-5X8AWrNvBg</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Manukure, Solomon</creator><creator>Zhou, Yuan</creator><creator>Ma, Wen-Xiu</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180401</creationdate><title>Lump solutions to a (2+1)-dimensional extended KP equation</title><author>Manukure, Solomon ; Zhou, Yuan ; Ma, Wen-Xiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-160be82cf20406105daae1813acaec74af5299538533bf8b3c4e6bba5ef750d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Computer algebra</topic><topic>Extended KP equation</topic><topic>Hirota bilinear form</topic><topic>Lump solutions</topic><topic>Nonlinear equations</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manukure, Solomon</creatorcontrib><creatorcontrib>Zhou, Yuan</creatorcontrib><creatorcontrib>Ma, Wen-Xiu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manukure, Solomon</au><au>Zhou, Yuan</au><au>Ma, Wen-Xiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lump solutions to a (2+1)-dimensional extended KP equation</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>75</volume><issue>7</issue><spage>2414</spage><epage>2419</epage><pages>2414-2419</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>With the aid of a computer algebra system, we present lump solutions to a (2+1)-dimensional extended Kadomtsev–Petviashvili equation (eKP) and give the sufficient and necessary conditions to guarantee analyticity and rational localization of the solutions. We plot a few solutions for some specific values of the free parameters involved and finally derive one of the lump solutions of the Kadomtsev–Petviashvili (KP) equations from the lump solutions of the eKP equation.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2017.12.030</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2018-04, Vol.75 (7), p.2414-2419 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_journals_2066202560 |
source | Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algebra Computer algebra Extended KP equation Hirota bilinear form Lump solutions Nonlinear equations Schrodinger equation |
title | Lump solutions to a (2+1)-dimensional extended KP equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A56%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lump%20solutions%20to%20a%20(2+1)-dimensional%20extended%20KP%20equation&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Manukure,%20Solomon&rft.date=2018-04-01&rft.volume=75&rft.issue=7&rft.spage=2414&rft.epage=2419&rft.pages=2414-2419&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2017.12.030&rft_dat=%3Cproquest_cross%3E2066202560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2066202560&rft_id=info:pmid/&rft_els_id=S0898122117307939&rfr_iscdi=true |