Application of a variance‐based sensitivity analysis method to the Biomass Scenario Learning Model
Variance‐based sensitivity analysis can provide a comprehensive understanding of the input factors that drive model behavior, complementing more traditional system dynamics methods with quantitative metrics. This paper presents the methodology of a variance‐based sensitivity analysis of the Biomass...
Gespeichert in:
Veröffentlicht in: | System dynamics review 2017-07, Vol.33 (3-4), p.311-335 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 335 |
---|---|
container_issue | 3-4 |
container_start_page | 311 |
container_title | System dynamics review |
container_volume | 33 |
creator | Jadun, Paige Vimmerstedt, Laura J. Bush, Brian W. Inman, Daniel Peterson, Steve |
description | Variance‐based sensitivity analysis can provide a comprehensive understanding of the input factors that drive model behavior, complementing more traditional system dynamics methods with quantitative metrics. This paper presents the methodology of a variance‐based sensitivity analysis of the Biomass Scenario Learning Model, a published STELLA model of interactions among investment, production, and learning in an emerging competitive industry. We document the methodology requirements, interpretations, and constraints, and compute estimated sensitivity indices and their uncertainties. We show that application of variance‐based sensitivity analysis to the model allows us to test for non‐additivity, identify influential and interactive variables, and confirm model formulation. To enable use of this type of sensitivity analysis in other system dynamics models, we provide this study's R code, annotated to facilitate adaptation to other studies. A related paper describes application of these techniques to the much larger Biomass Scenario Model. |
doi_str_mv | 10.1002/sdr.1594 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2066112623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2066112623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3604-1490b0d8307b3bc2085c73f6aa584b0606ed84d1428f584f899f074cc11211ee3</originalsourceid><addsrcrecordid>eNp10EtOwzAQBmALgUQpSBzBEhs2KeMkTZxlKeUhFSFRWFuOPaGu0jjYaVF2HIEzchJcyhZ5MZL1zWjmJ-ScwYgBxFdeuxEbF-kBGTAoiojlcX5IBsB5EuWQZcfkxPsVAAuPD4ietG1tlOyMbaitqKRb6YxsFH5_fpXSo6YeG286szVdT2Uj694bT9fYLa2mnaXdEum1sWvpPV0obEK7pXOUrjHNG320GutTclTJ2uPZXx2S19vZy_Q-mj_dPUwn80glGaQRSwsoQfME8jIpVQx8rPKkyqQc87SEDDLUPNUsjXkVfipeFBXkqVKMxYwhJkNysZ_bOvu-Qd-Jld24sLIXcTg9sCxOgrrcK-Ws9w4r0Tqzlq4XDMQuQxEyFLsMA4329MPU2P_rxOLm-df_AMZzc1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2066112623</pqid></control><display><type>article</type><title>Application of a variance‐based sensitivity analysis method to the Biomass Scenario Learning Model</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Jadun, Paige ; Vimmerstedt, Laura J. ; Bush, Brian W. ; Inman, Daniel ; Peterson, Steve</creator><creatorcontrib>Jadun, Paige ; Vimmerstedt, Laura J. ; Bush, Brian W. ; Inman, Daniel ; Peterson, Steve</creatorcontrib><description>Variance‐based sensitivity analysis can provide a comprehensive understanding of the input factors that drive model behavior, complementing more traditional system dynamics methods with quantitative metrics. This paper presents the methodology of a variance‐based sensitivity analysis of the Biomass Scenario Learning Model, a published STELLA model of interactions among investment, production, and learning in an emerging competitive industry. We document the methodology requirements, interpretations, and constraints, and compute estimated sensitivity indices and their uncertainties. We show that application of variance‐based sensitivity analysis to the model allows us to test for non‐additivity, identify influential and interactive variables, and confirm model formulation. To enable use of this type of sensitivity analysis in other system dynamics models, we provide this study's R code, annotated to facilitate adaptation to other studies. A related paper describes application of these techniques to the much larger Biomass Scenario Model.</description><identifier>ISSN: 0883-7066</identifier><identifier>EISSN: 1099-1727</identifier><identifier>DOI: 10.1002/sdr.1594</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Biomass ; Learning ; Model testing ; Sensitivity analysis ; System dynamics ; Variance analysis</subject><ispartof>System dynamics review, 2017-07, Vol.33 (3-4), p.311-335</ispartof><rights>Copyright © 2018 Alliance for Sustainable Energy, LLC. published by John Wiley & Sons Ltd on behalf of System Dynamics Society.</rights><rights>Copyright © 2017 System Dynamics Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3604-1490b0d8307b3bc2085c73f6aa584b0606ed84d1428f584f899f074cc11211ee3</citedby><cites>FETCH-LOGICAL-c3604-1490b0d8307b3bc2085c73f6aa584b0606ed84d1428f584f899f074cc11211ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsdr.1594$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsdr.1594$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jadun, Paige</creatorcontrib><creatorcontrib>Vimmerstedt, Laura J.</creatorcontrib><creatorcontrib>Bush, Brian W.</creatorcontrib><creatorcontrib>Inman, Daniel</creatorcontrib><creatorcontrib>Peterson, Steve</creatorcontrib><title>Application of a variance‐based sensitivity analysis method to the Biomass Scenario Learning Model</title><title>System dynamics review</title><description>Variance‐based sensitivity analysis can provide a comprehensive understanding of the input factors that drive model behavior, complementing more traditional system dynamics methods with quantitative metrics. This paper presents the methodology of a variance‐based sensitivity analysis of the Biomass Scenario Learning Model, a published STELLA model of interactions among investment, production, and learning in an emerging competitive industry. We document the methodology requirements, interpretations, and constraints, and compute estimated sensitivity indices and their uncertainties. We show that application of variance‐based sensitivity analysis to the model allows us to test for non‐additivity, identify influential and interactive variables, and confirm model formulation. To enable use of this type of sensitivity analysis in other system dynamics models, we provide this study's R code, annotated to facilitate adaptation to other studies. A related paper describes application of these techniques to the much larger Biomass Scenario Model.</description><subject>Biomass</subject><subject>Learning</subject><subject>Model testing</subject><subject>Sensitivity analysis</subject><subject>System dynamics</subject><subject>Variance analysis</subject><issn>0883-7066</issn><issn>1099-1727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp10EtOwzAQBmALgUQpSBzBEhs2KeMkTZxlKeUhFSFRWFuOPaGu0jjYaVF2HIEzchJcyhZ5MZL1zWjmJ-ScwYgBxFdeuxEbF-kBGTAoiojlcX5IBsB5EuWQZcfkxPsVAAuPD4ietG1tlOyMbaitqKRb6YxsFH5_fpXSo6YeG286szVdT2Uj694bT9fYLa2mnaXdEum1sWvpPV0obEK7pXOUrjHNG320GutTclTJ2uPZXx2S19vZy_Q-mj_dPUwn80glGaQRSwsoQfME8jIpVQx8rPKkyqQc87SEDDLUPNUsjXkVfipeFBXkqVKMxYwhJkNysZ_bOvu-Qd-Jld24sLIXcTg9sCxOgrrcK-Ws9w4r0Tqzlq4XDMQuQxEyFLsMA4329MPU2P_rxOLm-df_AMZzc1A</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Jadun, Paige</creator><creator>Vimmerstedt, Laura J.</creator><creator>Bush, Brian W.</creator><creator>Inman, Daniel</creator><creator>Peterson, Steve</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Periodicals Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201707</creationdate><title>Application of a variance‐based sensitivity analysis method to the Biomass Scenario Learning Model</title><author>Jadun, Paige ; Vimmerstedt, Laura J. ; Bush, Brian W. ; Inman, Daniel ; Peterson, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3604-1490b0d8307b3bc2085c73f6aa584b0606ed84d1428f584f899f074cc11211ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biomass</topic><topic>Learning</topic><topic>Model testing</topic><topic>Sensitivity analysis</topic><topic>System dynamics</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jadun, Paige</creatorcontrib><creatorcontrib>Vimmerstedt, Laura J.</creatorcontrib><creatorcontrib>Bush, Brian W.</creatorcontrib><creatorcontrib>Inman, Daniel</creatorcontrib><creatorcontrib>Peterson, Steve</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>System dynamics review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jadun, Paige</au><au>Vimmerstedt, Laura J.</au><au>Bush, Brian W.</au><au>Inman, Daniel</au><au>Peterson, Steve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of a variance‐based sensitivity analysis method to the Biomass Scenario Learning Model</atitle><jtitle>System dynamics review</jtitle><date>2017-07</date><risdate>2017</risdate><volume>33</volume><issue>3-4</issue><spage>311</spage><epage>335</epage><pages>311-335</pages><issn>0883-7066</issn><eissn>1099-1727</eissn><abstract>Variance‐based sensitivity analysis can provide a comprehensive understanding of the input factors that drive model behavior, complementing more traditional system dynamics methods with quantitative metrics. This paper presents the methodology of a variance‐based sensitivity analysis of the Biomass Scenario Learning Model, a published STELLA model of interactions among investment, production, and learning in an emerging competitive industry. We document the methodology requirements, interpretations, and constraints, and compute estimated sensitivity indices and their uncertainties. We show that application of variance‐based sensitivity analysis to the model allows us to test for non‐additivity, identify influential and interactive variables, and confirm model formulation. To enable use of this type of sensitivity analysis in other system dynamics models, we provide this study's R code, annotated to facilitate adaptation to other studies. A related paper describes application of these techniques to the much larger Biomass Scenario Model.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/sdr.1594</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-7066 |
ispartof | System dynamics review, 2017-07, Vol.33 (3-4), p.311-335 |
issn | 0883-7066 1099-1727 |
language | eng |
recordid | cdi_proquest_journals_2066112623 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | Biomass Learning Model testing Sensitivity analysis System dynamics Variance analysis |
title | Application of a variance‐based sensitivity analysis method to the Biomass Scenario Learning Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A28%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20a%20variance%E2%80%90based%20sensitivity%20analysis%20method%20to%20the%20Biomass%20Scenario%20Learning%20Model&rft.jtitle=System%20dynamics%20review&rft.au=Jadun,%20Paige&rft.date=2017-07&rft.volume=33&rft.issue=3-4&rft.spage=311&rft.epage=335&rft.pages=311-335&rft.issn=0883-7066&rft.eissn=1099-1727&rft_id=info:doi/10.1002/sdr.1594&rft_dat=%3Cproquest_cross%3E2066112623%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2066112623&rft_id=info:pmid/&rfr_iscdi=true |