A principled approach for building and evaluating neural network classification models

In this paper, we propose a principled approach to building and evaluating neural network classification models for decision support system (DSS) implementations. First, the usefulness of neural networks for use with e-commerce data and for Bayesian classification is discussed. Next, the theory conc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Decision Support Systems 2004-11, Vol.38 (2), p.233-246
Hauptverfasser: Berardi, Victor L., Patuwo, B.Eddy, Hu, Michael Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 246
container_issue 2
container_start_page 233
container_title Decision Support Systems
container_volume 38
creator Berardi, Victor L.
Patuwo, B.Eddy
Hu, Michael Y.
description In this paper, we propose a principled approach to building and evaluating neural network classification models for decision support system (DSS) implementations. First, the usefulness of neural networks for use with e-commerce data and for Bayesian classification is discussed. Next, the theory concerning model accuracy and generalization is presented. Then, the principled approach, which is developed with consideration of these issues, is described. Through an illustrative problem, it is seen that when problem complexity is considered, the classification performance of the neural networks can be much better than what is observed. Furthermore, it is seen that model order selection processes based upon a single dataset can lead to an incorrect conclusion concerning the best model, which impacts model error and utility.
doi_str_mv 10.1016/S0167-9236(03)00093-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_206601172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167923603000939</els_id><sourcerecordid>701855971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-10a2ab69c1ae0444c4fee58e2d3c10dc22dad0fd774abe3000ab97bfce90c43f3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMInIFmc4BBYx2ncnFBV8ZIqceBxtRx7DS5pHOykiL_HbRFXLjta7czuzhByyuCSASuvnlIRWZXz8hz4BQBUPKv2yIhNBc8mohL7ZPRHOSRHMS4BSi6m5Yi8zmgXXKtd16ChquuCV_qdWh9oPbjGuPaNqtZQXKtmUP2mbXEIqknQf_nwQXWjYnTW6TT1LV15g008JgdWNRFPfnFMXm5vnuf32eLx7mE-W2Sa86LPGKhc1WWlmUIoikIXFnEyxdxwzcDoPDfKgDVCFKpGnqypuhK11ViBLrjlY3K225v-_hww9nLph9CmkzKHsgTGRJ5Ikx1JBx9jQCuT5ZUK35KB3CQotwnKTTwSuNwmKKuku97pkiFcOwwyaoetRuMC6l4a7_7Z8AMvp3oV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206601172</pqid></control><display><type>article</type><title>A principled approach for building and evaluating neural network classification models</title><source>Elsevier ScienceDirect Journals</source><creator>Berardi, Victor L. ; Patuwo, B.Eddy ; Hu, Michael Y.</creator><creatorcontrib>Berardi, Victor L. ; Patuwo, B.Eddy ; Hu, Michael Y.</creatorcontrib><description>In this paper, we propose a principled approach to building and evaluating neural network classification models for decision support system (DSS) implementations. First, the usefulness of neural networks for use with e-commerce data and for Bayesian classification is discussed. Next, the theory concerning model accuracy and generalization is presented. Then, the principled approach, which is developed with consideration of these issues, is described. Through an illustrative problem, it is seen that when problem complexity is considered, the classification performance of the neural networks can be much better than what is observed. Furthermore, it is seen that model order selection processes based upon a single dataset can lead to an incorrect conclusion concerning the best model, which impacts model error and utility.</description><identifier>ISSN: 0167-9236</identifier><identifier>EISSN: 1873-5797</identifier><identifier>DOI: 10.1016/S0167-9236(03)00093-9</identifier><identifier>CODEN: DSSYDK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Artificial neural networks ; Classification ; Computer based modeling ; Data utilization ; Decision processes ; Decision support systems ; E-commerce ; Mathematical models ; Model bias ; Model error ; Model variance ; Neural networks ; Studies ; Systems development</subject><ispartof>Decision Support Systems, 2004-11, Vol.38 (2), p.233-246</ispartof><rights>2003 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Nov 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-10a2ab69c1ae0444c4fee58e2d3c10dc22dad0fd774abe3000ab97bfce90c43f3</citedby><cites>FETCH-LOGICAL-c334t-10a2ab69c1ae0444c4fee58e2d3c10dc22dad0fd774abe3000ab97bfce90c43f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0167-9236(03)00093-9$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Berardi, Victor L.</creatorcontrib><creatorcontrib>Patuwo, B.Eddy</creatorcontrib><creatorcontrib>Hu, Michael Y.</creatorcontrib><title>A principled approach for building and evaluating neural network classification models</title><title>Decision Support Systems</title><description>In this paper, we propose a principled approach to building and evaluating neural network classification models for decision support system (DSS) implementations. First, the usefulness of neural networks for use with e-commerce data and for Bayesian classification is discussed. Next, the theory concerning model accuracy and generalization is presented. Then, the principled approach, which is developed with consideration of these issues, is described. Through an illustrative problem, it is seen that when problem complexity is considered, the classification performance of the neural networks can be much better than what is observed. Furthermore, it is seen that model order selection processes based upon a single dataset can lead to an incorrect conclusion concerning the best model, which impacts model error and utility.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Computer based modeling</subject><subject>Data utilization</subject><subject>Decision processes</subject><subject>Decision support systems</subject><subject>E-commerce</subject><subject>Mathematical models</subject><subject>Model bias</subject><subject>Model error</subject><subject>Model variance</subject><subject>Neural networks</subject><subject>Studies</subject><subject>Systems development</subject><issn>0167-9236</issn><issn>1873-5797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMInIFmc4BBYx2ncnFBV8ZIqceBxtRx7DS5pHOykiL_HbRFXLjta7czuzhByyuCSASuvnlIRWZXz8hz4BQBUPKv2yIhNBc8mohL7ZPRHOSRHMS4BSi6m5Yi8zmgXXKtd16ChquuCV_qdWh9oPbjGuPaNqtZQXKtmUP2mbXEIqknQf_nwQXWjYnTW6TT1LV15g008JgdWNRFPfnFMXm5vnuf32eLx7mE-W2Sa86LPGKhc1WWlmUIoikIXFnEyxdxwzcDoPDfKgDVCFKpGnqypuhK11ViBLrjlY3K225v-_hww9nLph9CmkzKHsgTGRJ5Ikx1JBx9jQCuT5ZUK35KB3CQotwnKTTwSuNwmKKuku97pkiFcOwwyaoetRuMC6l4a7_7Z8AMvp3oV</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Berardi, Victor L.</creator><creator>Patuwo, B.Eddy</creator><creator>Hu, Michael Y.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20041101</creationdate><title>A principled approach for building and evaluating neural network classification models</title><author>Berardi, Victor L. ; Patuwo, B.Eddy ; Hu, Michael Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-10a2ab69c1ae0444c4fee58e2d3c10dc22dad0fd774abe3000ab97bfce90c43f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Computer based modeling</topic><topic>Data utilization</topic><topic>Decision processes</topic><topic>Decision support systems</topic><topic>E-commerce</topic><topic>Mathematical models</topic><topic>Model bias</topic><topic>Model error</topic><topic>Model variance</topic><topic>Neural networks</topic><topic>Studies</topic><topic>Systems development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berardi, Victor L.</creatorcontrib><creatorcontrib>Patuwo, B.Eddy</creatorcontrib><creatorcontrib>Hu, Michael Y.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Decision Support Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berardi, Victor L.</au><au>Patuwo, B.Eddy</au><au>Hu, Michael Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A principled approach for building and evaluating neural network classification models</atitle><jtitle>Decision Support Systems</jtitle><date>2004-11-01</date><risdate>2004</risdate><volume>38</volume><issue>2</issue><spage>233</spage><epage>246</epage><pages>233-246</pages><issn>0167-9236</issn><eissn>1873-5797</eissn><coden>DSSYDK</coden><abstract>In this paper, we propose a principled approach to building and evaluating neural network classification models for decision support system (DSS) implementations. First, the usefulness of neural networks for use with e-commerce data and for Bayesian classification is discussed. Next, the theory concerning model accuracy and generalization is presented. Then, the principled approach, which is developed with consideration of these issues, is described. Through an illustrative problem, it is seen that when problem complexity is considered, the classification performance of the neural networks can be much better than what is observed. Furthermore, it is seen that model order selection processes based upon a single dataset can lead to an incorrect conclusion concerning the best model, which impacts model error and utility.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0167-9236(03)00093-9</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9236
ispartof Decision Support Systems, 2004-11, Vol.38 (2), p.233-246
issn 0167-9236
1873-5797
language eng
recordid cdi_proquest_journals_206601172
source Elsevier ScienceDirect Journals
subjects Artificial neural networks
Classification
Computer based modeling
Data utilization
Decision processes
Decision support systems
E-commerce
Mathematical models
Model bias
Model error
Model variance
Neural networks
Studies
Systems development
title A principled approach for building and evaluating neural network classification models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20principled%20approach%20for%20building%20and%20evaluating%20neural%20network%20classification%20models&rft.jtitle=Decision%20Support%20Systems&rft.au=Berardi,%20Victor%20L.&rft.date=2004-11-01&rft.volume=38&rft.issue=2&rft.spage=233&rft.epage=246&rft.pages=233-246&rft.issn=0167-9236&rft.eissn=1873-5797&rft.coden=DSSYDK&rft_id=info:doi/10.1016/S0167-9236(03)00093-9&rft_dat=%3Cproquest_cross%3E701855971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206601172&rft_id=info:pmid/&rft_els_id=S0167923603000939&rfr_iscdi=true