A probabilistic model for interactive decision-making

A probabilistic reasoning model is defined where the decision maker (d.m.) is engaged in a sequential information-gathering process facing the trade-off between the reliability of the achieved solution and the associated observation cost. The d.m. is directly involved in the proposed flexible contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Decision Support Systems 1999-05, Vol.25 (4), p.289-308
Hauptverfasser: Reverberi, Pierfrancesco, Talamo, Maurizio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 308
container_issue 4
container_start_page 289
container_title Decision Support Systems
container_volume 25
creator Reverberi, Pierfrancesco
Talamo, Maurizio
description A probabilistic reasoning model is defined where the decision maker (d.m.) is engaged in a sequential information-gathering process facing the trade-off between the reliability of the achieved solution and the associated observation cost. The d.m. is directly involved in the proposed flexible control strategy, which is based on information-theoretic principles. The devised strategy works on a Bayesian belief network that allows the efficient representation and manipulation of the knowledge base relevant to the problem domain. It is shown that this strategy guarantees a constant factor approximate solution with respect to the optimum of the decision problem. Some application examples are also discussed.
doi_str_mv 10.1016/S0167-9236(99)00013-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_206600684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167923699000135</els_id><sourcerecordid>42163581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8b7ff82c396b32451e8f3da0da156d09be2d759335f838b74fa6cc8ee02658253</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QVjEgx5Wk03zdZJS_IKCB_UcsslEUre7NdkW_Pdm26JHLzNzeOadeV-Ezgm-IZjw29dcRKkqyq-UusYYE1qyAzQiUuRBKHGIRr_IMTpJaYExp0LyEWLTYhW72tShCakPtlh2DprCd7EIbQ_R2D5soHBgQwpdWy7NZ2g_TtGRN02Cs30fo_eH-7fZUzl_eXyeTeelpZz2payF97KyVPGaVhNGQHrqDHaGMO6wqqFygilKmZc0wxNvuLUSAFecyYrRMbrY6eYfv9aQer3o1rHNJ3WFOc8u5CRDbAfZ2KUUwetVDEsTvzXBeghIbwPSg3utlN4GpAfxy724SdY0Ppo2m_xblpJm_Yzd7TDIRjcBok42QGvBhQi2164L_xz6AccMeKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206600684</pqid></control><display><type>article</type><title>A probabilistic model for interactive decision-making</title><source>Elsevier ScienceDirect Journals</source><creator>Reverberi, Pierfrancesco ; Talamo, Maurizio</creator><creatorcontrib>Reverberi, Pierfrancesco ; Talamo, Maurizio</creatorcontrib><description>A probabilistic reasoning model is defined where the decision maker (d.m.) is engaged in a sequential information-gathering process facing the trade-off between the reliability of the achieved solution and the associated observation cost. The d.m. is directly involved in the proposed flexible control strategy, which is based on information-theoretic principles. The devised strategy works on a Bayesian belief network that allows the efficient representation and manipulation of the knowledge base relevant to the problem domain. It is shown that this strategy guarantees a constant factor approximate solution with respect to the optimum of the decision problem. Some application examples are also discussed.</description><identifier>ISSN: 0167-9236</identifier><identifier>EISSN: 1873-5797</identifier><identifier>DOI: 10.1016/S0167-9236(99)00013-5</identifier><identifier>CODEN: DSSYDK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Bayesian analysis ; Bayesian belief networks ; Decision making ; Decision support systems ; Decision theory. Utility theory ; Decision-making under uncertainty ; Exact sciences and technology ; Information-gathering strategy ; Interactive solution procedure ; Myopic policy ; Operational research and scientific management ; Operational research. Management science ; Probability ; Studies</subject><ispartof>Decision Support Systems, 1999-05, Vol.25 (4), p.289-308</ispartof><rights>1999 Elsevier Science B.V.</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. May 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8b7ff82c396b32451e8f3da0da156d09be2d759335f838b74fa6cc8ee02658253</citedby><cites>FETCH-LOGICAL-c363t-8b7ff82c396b32451e8f3da0da156d09be2d759335f838b74fa6cc8ee02658253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167923699000135$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1883068$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Reverberi, Pierfrancesco</creatorcontrib><creatorcontrib>Talamo, Maurizio</creatorcontrib><title>A probabilistic model for interactive decision-making</title><title>Decision Support Systems</title><description>A probabilistic reasoning model is defined where the decision maker (d.m.) is engaged in a sequential information-gathering process facing the trade-off between the reliability of the achieved solution and the associated observation cost. The d.m. is directly involved in the proposed flexible control strategy, which is based on information-theoretic principles. The devised strategy works on a Bayesian belief network that allows the efficient representation and manipulation of the knowledge base relevant to the problem domain. It is shown that this strategy guarantees a constant factor approximate solution with respect to the optimum of the decision problem. Some application examples are also discussed.</description><subject>Applied sciences</subject><subject>Bayesian analysis</subject><subject>Bayesian belief networks</subject><subject>Decision making</subject><subject>Decision support systems</subject><subject>Decision theory. Utility theory</subject><subject>Decision-making under uncertainty</subject><subject>Exact sciences and technology</subject><subject>Information-gathering strategy</subject><subject>Interactive solution procedure</subject><subject>Myopic policy</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Probability</subject><subject>Studies</subject><issn>0167-9236</issn><issn>1873-5797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QVjEgx5Wk03zdZJS_IKCB_UcsslEUre7NdkW_Pdm26JHLzNzeOadeV-Ezgm-IZjw29dcRKkqyq-UusYYE1qyAzQiUuRBKHGIRr_IMTpJaYExp0LyEWLTYhW72tShCakPtlh2DprCd7EIbQ_R2D5soHBgQwpdWy7NZ2g_TtGRN02Cs30fo_eH-7fZUzl_eXyeTeelpZz2payF97KyVPGaVhNGQHrqDHaGMO6wqqFygilKmZc0wxNvuLUSAFecyYrRMbrY6eYfv9aQer3o1rHNJ3WFOc8u5CRDbAfZ2KUUwetVDEsTvzXBeghIbwPSg3utlN4GpAfxy724SdY0Ppo2m_xblpJm_Yzd7TDIRjcBok42QGvBhQi2164L_xz6AccMeKw</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Reverberi, Pierfrancesco</creator><creator>Talamo, Maurizio</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990501</creationdate><title>A probabilistic model for interactive decision-making</title><author>Reverberi, Pierfrancesco ; Talamo, Maurizio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8b7ff82c396b32451e8f3da0da156d09be2d759335f838b74fa6cc8ee02658253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Bayesian analysis</topic><topic>Bayesian belief networks</topic><topic>Decision making</topic><topic>Decision support systems</topic><topic>Decision theory. Utility theory</topic><topic>Decision-making under uncertainty</topic><topic>Exact sciences and technology</topic><topic>Information-gathering strategy</topic><topic>Interactive solution procedure</topic><topic>Myopic policy</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Probability</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reverberi, Pierfrancesco</creatorcontrib><creatorcontrib>Talamo, Maurizio</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Decision Support Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reverberi, Pierfrancesco</au><au>Talamo, Maurizio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A probabilistic model for interactive decision-making</atitle><jtitle>Decision Support Systems</jtitle><date>1999-05-01</date><risdate>1999</risdate><volume>25</volume><issue>4</issue><spage>289</spage><epage>308</epage><pages>289-308</pages><issn>0167-9236</issn><eissn>1873-5797</eissn><coden>DSSYDK</coden><abstract>A probabilistic reasoning model is defined where the decision maker (d.m.) is engaged in a sequential information-gathering process facing the trade-off between the reliability of the achieved solution and the associated observation cost. The d.m. is directly involved in the proposed flexible control strategy, which is based on information-theoretic principles. The devised strategy works on a Bayesian belief network that allows the efficient representation and manipulation of the knowledge base relevant to the problem domain. It is shown that this strategy guarantees a constant factor approximate solution with respect to the optimum of the decision problem. Some application examples are also discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0167-9236(99)00013-5</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9236
ispartof Decision Support Systems, 1999-05, Vol.25 (4), p.289-308
issn 0167-9236
1873-5797
language eng
recordid cdi_proquest_journals_206600684
source Elsevier ScienceDirect Journals
subjects Applied sciences
Bayesian analysis
Bayesian belief networks
Decision making
Decision support systems
Decision theory. Utility theory
Decision-making under uncertainty
Exact sciences and technology
Information-gathering strategy
Interactive solution procedure
Myopic policy
Operational research and scientific management
Operational research. Management science
Probability
Studies
title A probabilistic model for interactive decision-making
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A52%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20probabilistic%20model%20for%20interactive%20decision-making&rft.jtitle=Decision%20Support%20Systems&rft.au=Reverberi,%20Pierfrancesco&rft.date=1999-05-01&rft.volume=25&rft.issue=4&rft.spage=289&rft.epage=308&rft.pages=289-308&rft.issn=0167-9236&rft.eissn=1873-5797&rft.coden=DSSYDK&rft_id=info:doi/10.1016/S0167-9236(99)00013-5&rft_dat=%3Cproquest_cross%3E42163581%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206600684&rft_id=info:pmid/&rft_els_id=S0167923699000135&rfr_iscdi=true