Electronic transport in graphene nanoribbons with disorder look at the pseudo-spin polarization: Dirac versus tight-binding model

We have compared results of electronic transport using two different approaches: Dirac vs tight-binding (TB) Hamiltonians to assesses disorder-induced effects in graphene nanoribbons. We apply the proposed Hamiltonians to calculate the density of states, the transmission along the ribbon, and the ps...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2018-07, Vol.91 (7), p.1-9, Article 157
Hauptverfasser: López, Luis I. A., Mendoza, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 7
container_start_page 1
container_title The European physical journal. B, Condensed matter physics
container_volume 91
creator López, Luis I. A.
Mendoza, Michel
description We have compared results of electronic transport using two different approaches: Dirac vs tight-binding (TB) Hamiltonians to assesses disorder-induced effects in graphene nanoribbons. We apply the proposed Hamiltonians to calculate the density of states, the transmission along the ribbon, and the pseudo-spin polarization ( P ( E )) in metallic armchair graphene nanoribbons. We clearly show differences between these two approaches in the interference processes, especially in the low-lying energy limit, when the systems are found in the presence of random impurities (disorder). This allows us to find fingerprints associated with each model used. As the disorder increases, more robust electronic transmission (through polarized states in a given sublattice) arises when one is dealing with the Dirac model only. We also find with this model unexpected peaks in the P ( E ) far from the Dirac point for wider nanoribbons. In the other hand, the model TB show the Dirac limit with disturbances of the hyperboloid subbands for certain potentials of the impurities. In general, our study is indicating that a P ( E ) spectroscopy (analyzing the line width and intensity) can be used to detect fingerprints of the increase of asymmetry in the scattering processes and the transport limits where hyperboloid subbands are important.
doi_str_mv 10.1140/epjb/e2018-80594-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2065928117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A554689060</galeid><sourcerecordid>A554689060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-b4fc0c5c8a29ab848a214b68faeafbd6d58e65c6ff33155e369bb97262cdadc33</originalsourceid><addsrcrecordid>eNp9kc9rFDEUx4NYsK7-A54CnjxMm8wk6Yy3UqsWCoJtzyE_XmazziZjktHVm_-5aVcsCyI5vBA-nzze-yL0ipITShk5hXmjT6EltG96wgfW7J6gY8o61gjSiad_723_DD3PeUMIoYKyY_TrcgJTUgze4JJUyHNMBfuAx6TmNQTAQYWYvNYxZPzdlzW2PsdkIeEpxi9YFVzWgOcMi41Nnqs6x0kl_1MVH8Nb_M4nZfA3SHnJuPhxXRrtg_VhxNtoYXqBjpyaMrz8U1fo7v3l7cXH5vrTh6uL8-vGsJZUhzlDDDe9agele1YrZVr0ToFy2grLexDcCOe6jnIOnRi0Hs5a0RqrrOm6FXq9_3dO8esCuchNXFKoLWVLBB_antKzR2pUE0gfXKxbMVufjTznnIl-IHWjK3TyD6oeC1tvYgDn6_uB8OZAqEyBXRnVkrO8uvl8yLZ71qSYcwIn5-S3Kv2QlMj7tOV92vIhbfmQttxVqdtLucJhhPQ43X-s3yoDsWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065928117</pqid></control><display><type>article</type><title>Electronic transport in graphene nanoribbons with disorder look at the pseudo-spin polarization: Dirac versus tight-binding model</title><source>SpringerLink Journals - AutoHoldings</source><creator>López, Luis I. A. ; Mendoza, Michel</creator><creatorcontrib>López, Luis I. A. ; Mendoza, Michel</creatorcontrib><description>We have compared results of electronic transport using two different approaches: Dirac vs tight-binding (TB) Hamiltonians to assesses disorder-induced effects in graphene nanoribbons. We apply the proposed Hamiltonians to calculate the density of states, the transmission along the ribbon, and the pseudo-spin polarization ( P ( E )) in metallic armchair graphene nanoribbons. We clearly show differences between these two approaches in the interference processes, especially in the low-lying energy limit, when the systems are found in the presence of random impurities (disorder). This allows us to find fingerprints associated with each model used. As the disorder increases, more robust electronic transmission (through polarized states in a given sublattice) arises when one is dealing with the Dirac model only. We also find with this model unexpected peaks in the P ( E ) far from the Dirac point for wider nanoribbons. In the other hand, the model TB show the Dirac limit with disturbances of the hyperboloid subbands for certain potentials of the impurities. In general, our study is indicating that a P ( E ) spectroscopy (analyzing the line width and intensity) can be used to detect fingerprints of the increase of asymmetry in the scattering processes and the transport limits where hyperboloid subbands are important.</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2018-80594-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Binding ; Comparative analysis ; Complex Systems ; Condensed Matter Physics ; Electron transport ; Fingerprints ; Fluid- and Aerodynamics ; Graphene ; Graphite ; Impurities ; Medical research ; Nanoribbons ; Physics ; Physics and Astronomy ; Polarization ; Polarization (spin alignment) ; Regular Article ; Solid State Physics</subject><ispartof>The European physical journal. B, Condensed matter physics, 2018-07, Vol.91 (7), p.1-9, Article 157</ispartof><rights>EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-b4fc0c5c8a29ab848a214b68faeafbd6d58e65c6ff33155e369bb97262cdadc33</citedby><cites>FETCH-LOGICAL-c420t-b4fc0c5c8a29ab848a214b68faeafbd6d58e65c6ff33155e369bb97262cdadc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/e2018-80594-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/e2018-80594-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>López, Luis I. A.</creatorcontrib><creatorcontrib>Mendoza, Michel</creatorcontrib><title>Electronic transport in graphene nanoribbons with disorder look at the pseudo-spin polarization: Dirac versus tight-binding model</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>We have compared results of electronic transport using two different approaches: Dirac vs tight-binding (TB) Hamiltonians to assesses disorder-induced effects in graphene nanoribbons. We apply the proposed Hamiltonians to calculate the density of states, the transmission along the ribbon, and the pseudo-spin polarization ( P ( E )) in metallic armchair graphene nanoribbons. We clearly show differences between these two approaches in the interference processes, especially in the low-lying energy limit, when the systems are found in the presence of random impurities (disorder). This allows us to find fingerprints associated with each model used. As the disorder increases, more robust electronic transmission (through polarized states in a given sublattice) arises when one is dealing with the Dirac model only. We also find with this model unexpected peaks in the P ( E ) far from the Dirac point for wider nanoribbons. In the other hand, the model TB show the Dirac limit with disturbances of the hyperboloid subbands for certain potentials of the impurities. In general, our study is indicating that a P ( E ) spectroscopy (analyzing the line width and intensity) can be used to detect fingerprints of the increase of asymmetry in the scattering processes and the transport limits where hyperboloid subbands are important.</description><subject>Binding</subject><subject>Comparative analysis</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Electron transport</subject><subject>Fingerprints</subject><subject>Fluid- and Aerodynamics</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Impurities</subject><subject>Medical research</subject><subject>Nanoribbons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarization</subject><subject>Polarization (spin alignment)</subject><subject>Regular Article</subject><subject>Solid State Physics</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc9rFDEUx4NYsK7-A54CnjxMm8wk6Yy3UqsWCoJtzyE_XmazziZjktHVm_-5aVcsCyI5vBA-nzze-yL0ipITShk5hXmjT6EltG96wgfW7J6gY8o61gjSiad_723_DD3PeUMIoYKyY_TrcgJTUgze4JJUyHNMBfuAx6TmNQTAQYWYvNYxZPzdlzW2PsdkIeEpxi9YFVzWgOcMi41Nnqs6x0kl_1MVH8Nb_M4nZfA3SHnJuPhxXRrtg_VhxNtoYXqBjpyaMrz8U1fo7v3l7cXH5vrTh6uL8-vGsJZUhzlDDDe9agele1YrZVr0ToFy2grLexDcCOe6jnIOnRi0Hs5a0RqrrOm6FXq9_3dO8esCuchNXFKoLWVLBB_antKzR2pUE0gfXKxbMVufjTznnIl-IHWjK3TyD6oeC1tvYgDn6_uB8OZAqEyBXRnVkrO8uvl8yLZ71qSYcwIn5-S3Kv2QlMj7tOV92vIhbfmQttxVqdtLucJhhPQ43X-s3yoDsWc</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>López, Luis I. A.</creator><creator>Mendoza, Michel</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20180701</creationdate><title>Electronic transport in graphene nanoribbons with disorder look at the pseudo-spin polarization: Dirac versus tight-binding model</title><author>López, Luis I. A. ; Mendoza, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-b4fc0c5c8a29ab848a214b68faeafbd6d58e65c6ff33155e369bb97262cdadc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Binding</topic><topic>Comparative analysis</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Electron transport</topic><topic>Fingerprints</topic><topic>Fluid- and Aerodynamics</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Impurities</topic><topic>Medical research</topic><topic>Nanoribbons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarization</topic><topic>Polarization (spin alignment)</topic><topic>Regular Article</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López, Luis I. A.</creatorcontrib><creatorcontrib>Mendoza, Michel</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López, Luis I. A.</au><au>Mendoza, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic transport in graphene nanoribbons with disorder look at the pseudo-spin polarization: Dirac versus tight-binding model</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>91</volume><issue>7</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>157</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>We have compared results of electronic transport using two different approaches: Dirac vs tight-binding (TB) Hamiltonians to assesses disorder-induced effects in graphene nanoribbons. We apply the proposed Hamiltonians to calculate the density of states, the transmission along the ribbon, and the pseudo-spin polarization ( P ( E )) in metallic armchair graphene nanoribbons. We clearly show differences between these two approaches in the interference processes, especially in the low-lying energy limit, when the systems are found in the presence of random impurities (disorder). This allows us to find fingerprints associated with each model used. As the disorder increases, more robust electronic transmission (through polarized states in a given sublattice) arises when one is dealing with the Dirac model only. We also find with this model unexpected peaks in the P ( E ) far from the Dirac point for wider nanoribbons. In the other hand, the model TB show the Dirac limit with disturbances of the hyperboloid subbands for certain potentials of the impurities. In general, our study is indicating that a P ( E ) spectroscopy (analyzing the line width and intensity) can be used to detect fingerprints of the increase of asymmetry in the scattering processes and the transport limits where hyperboloid subbands are important.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/e2018-80594-x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1434-6028
ispartof The European physical journal. B, Condensed matter physics, 2018-07, Vol.91 (7), p.1-9, Article 157
issn 1434-6028
1434-6036
language eng
recordid cdi_proquest_journals_2065928117
source SpringerLink Journals - AutoHoldings
subjects Binding
Comparative analysis
Complex Systems
Condensed Matter Physics
Electron transport
Fingerprints
Fluid- and Aerodynamics
Graphene
Graphite
Impurities
Medical research
Nanoribbons
Physics
Physics and Astronomy
Polarization
Polarization (spin alignment)
Regular Article
Solid State Physics
title Electronic transport in graphene nanoribbons with disorder look at the pseudo-spin polarization: Dirac versus tight-binding model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20transport%20in%20graphene%20nanoribbons%20with%20disorder%20look%20at%20the%20pseudo-spin%20polarization:%20Dirac%20versus%20tight-binding%20model&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=L%C3%B3pez,%20Luis%20I.%20A.&rft.date=2018-07-01&rft.volume=91&rft.issue=7&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=157&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2018-80594-x&rft_dat=%3Cgale_proqu%3EA554689060%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065928117&rft_id=info:pmid/&rft_galeid=A554689060&rfr_iscdi=true