Electronic transport in graphene nanoribbons with disorder look at the pseudo-spin polarization: Dirac versus tight-binding model
We have compared results of electronic transport using two different approaches: Dirac vs tight-binding (TB) Hamiltonians to assesses disorder-induced effects in graphene nanoribbons. We apply the proposed Hamiltonians to calculate the density of states, the transmission along the ribbon, and the ps...
Gespeichert in:
Veröffentlicht in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2018-07, Vol.91 (7), p.1-9, Article 157 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | The European physical journal. B, Condensed matter physics |
container_volume | 91 |
creator | López, Luis I. A. Mendoza, Michel |
description | We have compared results of electronic transport using two different approaches: Dirac vs tight-binding (TB) Hamiltonians to assesses disorder-induced effects in graphene nanoribbons. We apply the proposed Hamiltonians to calculate the density of states, the transmission along the ribbon, and the pseudo-spin polarization (
P
(
E
)) in metallic armchair graphene nanoribbons. We clearly show differences between these two approaches in the interference processes, especially in the low-lying energy limit, when the systems are found in the presence of random impurities (disorder). This allows us to find fingerprints associated with each model used. As the disorder increases, more robust electronic transmission (through polarized states in a given sublattice) arises when one is dealing with the Dirac model only. We also find with this model unexpected peaks in the
P
(
E
) far from the Dirac point for wider nanoribbons. In the other hand, the model TB show the Dirac limit with disturbances of the hyperboloid subbands for certain potentials of the impurities. In general, our study is indicating that a
P
(
E
) spectroscopy (analyzing the line width and intensity) can be used to detect fingerprints of the increase of asymmetry in the scattering processes and the transport limits where hyperboloid subbands are important. |
doi_str_mv | 10.1140/epjb/e2018-80594-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2065928117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A554689060</galeid><sourcerecordid>A554689060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-b4fc0c5c8a29ab848a214b68faeafbd6d58e65c6ff33155e369bb97262cdadc33</originalsourceid><addsrcrecordid>eNp9kc9rFDEUx4NYsK7-A54CnjxMm8wk6Yy3UqsWCoJtzyE_XmazziZjktHVm_-5aVcsCyI5vBA-nzze-yL0ipITShk5hXmjT6EltG96wgfW7J6gY8o61gjSiad_723_DD3PeUMIoYKyY_TrcgJTUgze4JJUyHNMBfuAx6TmNQTAQYWYvNYxZPzdlzW2PsdkIeEpxi9YFVzWgOcMi41Nnqs6x0kl_1MVH8Nb_M4nZfA3SHnJuPhxXRrtg_VhxNtoYXqBjpyaMrz8U1fo7v3l7cXH5vrTh6uL8-vGsJZUhzlDDDe9agele1YrZVr0ToFy2grLexDcCOe6jnIOnRi0Hs5a0RqrrOm6FXq9_3dO8esCuchNXFKoLWVLBB_antKzR2pUE0gfXKxbMVufjTznnIl-IHWjK3TyD6oeC1tvYgDn6_uB8OZAqEyBXRnVkrO8uvl8yLZ71qSYcwIn5-S3Kv2QlMj7tOV92vIhbfmQttxVqdtLucJhhPQ43X-s3yoDsWc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065928117</pqid></control><display><type>article</type><title>Electronic transport in graphene nanoribbons with disorder look at the pseudo-spin polarization: Dirac versus tight-binding model</title><source>SpringerLink Journals - AutoHoldings</source><creator>López, Luis I. A. ; Mendoza, Michel</creator><creatorcontrib>López, Luis I. A. ; Mendoza, Michel</creatorcontrib><description>We have compared results of electronic transport using two different approaches: Dirac vs tight-binding (TB) Hamiltonians to assesses disorder-induced effects in graphene nanoribbons. We apply the proposed Hamiltonians to calculate the density of states, the transmission along the ribbon, and the pseudo-spin polarization (
P
(
E
)) in metallic armchair graphene nanoribbons. We clearly show differences between these two approaches in the interference processes, especially in the low-lying energy limit, when the systems are found in the presence of random impurities (disorder). This allows us to find fingerprints associated with each model used. As the disorder increases, more robust electronic transmission (through polarized states in a given sublattice) arises when one is dealing with the Dirac model only. We also find with this model unexpected peaks in the
P
(
E
) far from the Dirac point for wider nanoribbons. In the other hand, the model TB show the Dirac limit with disturbances of the hyperboloid subbands for certain potentials of the impurities. In general, our study is indicating that a
P
(
E
) spectroscopy (analyzing the line width and intensity) can be used to detect fingerprints of the increase of asymmetry in the scattering processes and the transport limits where hyperboloid subbands are important.</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2018-80594-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Binding ; Comparative analysis ; Complex Systems ; Condensed Matter Physics ; Electron transport ; Fingerprints ; Fluid- and Aerodynamics ; Graphene ; Graphite ; Impurities ; Medical research ; Nanoribbons ; Physics ; Physics and Astronomy ; Polarization ; Polarization (spin alignment) ; Regular Article ; Solid State Physics</subject><ispartof>The European physical journal. B, Condensed matter physics, 2018-07, Vol.91 (7), p.1-9, Article 157</ispartof><rights>EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-b4fc0c5c8a29ab848a214b68faeafbd6d58e65c6ff33155e369bb97262cdadc33</citedby><cites>FETCH-LOGICAL-c420t-b4fc0c5c8a29ab848a214b68faeafbd6d58e65c6ff33155e369bb97262cdadc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/e2018-80594-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/e2018-80594-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>López, Luis I. A.</creatorcontrib><creatorcontrib>Mendoza, Michel</creatorcontrib><title>Electronic transport in graphene nanoribbons with disorder look at the pseudo-spin polarization: Dirac versus tight-binding model</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>We have compared results of electronic transport using two different approaches: Dirac vs tight-binding (TB) Hamiltonians to assesses disorder-induced effects in graphene nanoribbons. We apply the proposed Hamiltonians to calculate the density of states, the transmission along the ribbon, and the pseudo-spin polarization (
P
(
E
)) in metallic armchair graphene nanoribbons. We clearly show differences between these two approaches in the interference processes, especially in the low-lying energy limit, when the systems are found in the presence of random impurities (disorder). This allows us to find fingerprints associated with each model used. As the disorder increases, more robust electronic transmission (through polarized states in a given sublattice) arises when one is dealing with the Dirac model only. We also find with this model unexpected peaks in the
P
(
E
) far from the Dirac point for wider nanoribbons. In the other hand, the model TB show the Dirac limit with disturbances of the hyperboloid subbands for certain potentials of the impurities. In general, our study is indicating that a
P
(
E
) spectroscopy (analyzing the line width and intensity) can be used to detect fingerprints of the increase of asymmetry in the scattering processes and the transport limits where hyperboloid subbands are important.</description><subject>Binding</subject><subject>Comparative analysis</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Electron transport</subject><subject>Fingerprints</subject><subject>Fluid- and Aerodynamics</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Impurities</subject><subject>Medical research</subject><subject>Nanoribbons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarization</subject><subject>Polarization (spin alignment)</subject><subject>Regular Article</subject><subject>Solid State Physics</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc9rFDEUx4NYsK7-A54CnjxMm8wk6Yy3UqsWCoJtzyE_XmazziZjktHVm_-5aVcsCyI5vBA-nzze-yL0ipITShk5hXmjT6EltG96wgfW7J6gY8o61gjSiad_723_DD3PeUMIoYKyY_TrcgJTUgze4JJUyHNMBfuAx6TmNQTAQYWYvNYxZPzdlzW2PsdkIeEpxi9YFVzWgOcMi41Nnqs6x0kl_1MVH8Nb_M4nZfA3SHnJuPhxXRrtg_VhxNtoYXqBjpyaMrz8U1fo7v3l7cXH5vrTh6uL8-vGsJZUhzlDDDe9agele1YrZVr0ToFy2grLexDcCOe6jnIOnRi0Hs5a0RqrrOm6FXq9_3dO8esCuchNXFKoLWVLBB_antKzR2pUE0gfXKxbMVufjTznnIl-IHWjK3TyD6oeC1tvYgDn6_uB8OZAqEyBXRnVkrO8uvl8yLZ71qSYcwIn5-S3Kv2QlMj7tOV92vIhbfmQttxVqdtLucJhhPQ43X-s3yoDsWc</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>López, Luis I. A.</creator><creator>Mendoza, Michel</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20180701</creationdate><title>Electronic transport in graphene nanoribbons with disorder look at the pseudo-spin polarization: Dirac versus tight-binding model</title><author>López, Luis I. A. ; Mendoza, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-b4fc0c5c8a29ab848a214b68faeafbd6d58e65c6ff33155e369bb97262cdadc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Binding</topic><topic>Comparative analysis</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Electron transport</topic><topic>Fingerprints</topic><topic>Fluid- and Aerodynamics</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Impurities</topic><topic>Medical research</topic><topic>Nanoribbons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarization</topic><topic>Polarization (spin alignment)</topic><topic>Regular Article</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López, Luis I. A.</creatorcontrib><creatorcontrib>Mendoza, Michel</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López, Luis I. A.</au><au>Mendoza, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic transport in graphene nanoribbons with disorder look at the pseudo-spin polarization: Dirac versus tight-binding model</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>91</volume><issue>7</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>157</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>We have compared results of electronic transport using two different approaches: Dirac vs tight-binding (TB) Hamiltonians to assesses disorder-induced effects in graphene nanoribbons. We apply the proposed Hamiltonians to calculate the density of states, the transmission along the ribbon, and the pseudo-spin polarization (
P
(
E
)) in metallic armchair graphene nanoribbons. We clearly show differences between these two approaches in the interference processes, especially in the low-lying energy limit, when the systems are found in the presence of random impurities (disorder). This allows us to find fingerprints associated with each model used. As the disorder increases, more robust electronic transmission (through polarized states in a given sublattice) arises when one is dealing with the Dirac model only. We also find with this model unexpected peaks in the
P
(
E
) far from the Dirac point for wider nanoribbons. In the other hand, the model TB show the Dirac limit with disturbances of the hyperboloid subbands for certain potentials of the impurities. In general, our study is indicating that a
P
(
E
) spectroscopy (analyzing the line width and intensity) can be used to detect fingerprints of the increase of asymmetry in the scattering processes and the transport limits where hyperboloid subbands are important.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/e2018-80594-x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6028 |
ispartof | The European physical journal. B, Condensed matter physics, 2018-07, Vol.91 (7), p.1-9, Article 157 |
issn | 1434-6028 1434-6036 |
language | eng |
recordid | cdi_proquest_journals_2065928117 |
source | SpringerLink Journals - AutoHoldings |
subjects | Binding Comparative analysis Complex Systems Condensed Matter Physics Electron transport Fingerprints Fluid- and Aerodynamics Graphene Graphite Impurities Medical research Nanoribbons Physics Physics and Astronomy Polarization Polarization (spin alignment) Regular Article Solid State Physics |
title | Electronic transport in graphene nanoribbons with disorder look at the pseudo-spin polarization: Dirac versus tight-binding model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T16%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20transport%20in%20graphene%20nanoribbons%20with%20disorder%20look%20at%20the%20pseudo-spin%20polarization:%20Dirac%20versus%20tight-binding%20model&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=L%C3%B3pez,%20Luis%20I.%20A.&rft.date=2018-07-01&rft.volume=91&rft.issue=7&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=157&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2018-80594-x&rft_dat=%3Cgale_proqu%3EA554689060%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065928117&rft_id=info:pmid/&rft_galeid=A554689060&rfr_iscdi=true |