Symbolic linearization and vibration analysis of constrained multibody systems

A computer algebraic approach for linearization of the equations of constrained multibody systems is discussed in this paper. Based on linearized differential equations, the Newmark method is applied to calculate steady-state periodic vibrations of the parametric vibration of constrained dynamical m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive of applied mechanics (1991) 2018-08, Vol.88 (8), p.1369-1384
Hauptverfasser: Van Khang, Nguyen, Sy Nam, Nguyen, Van Quyen, Nguyen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1384
container_issue 8
container_start_page 1369
container_title Archive of applied mechanics (1991)
container_volume 88
creator Van Khang, Nguyen
Sy Nam, Nguyen
Van Quyen, Nguyen
description A computer algebraic approach for linearization of the equations of constrained multibody systems is discussed in this paper. Based on linearized differential equations, the Newmark method is applied to calculate steady-state periodic vibrations of the parametric vibration of constrained dynamical models. The numerical calculation is also demonstrated on a model of a mechanism with elastic connecting link.
doi_str_mv 10.1007/s00419-018-1376-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2065444254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2065444254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b213b7d852ff38e5525da47bc56f83f2a1e3e0273964086b488e4bb9e8f1ee7b3</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcB19F8tulSBnWEQRfqOiRtIhnaZszrCPXX26GKK1ePC-deHgehS0avGaXlDVAqWUUo04SJsiD6CC2YFJzQQrNjtKCVqAhTQpyiM4AtnXDF6QI9vYydS22scRt7b3P8skNMPbZ9gz-jy7_JtiNEwCngOvUwZDvRDe727RBdakYMIwy-g3N0EmwL_uLnLtHb_d3rak02zw-Pq9sNqQUrBuI4E65stOIhCO2V4qqxsnS1KoIWgVvmhae8FFUhqS6c1NpL5yqvA_O-dGKJrubdXU4few-D2aZ9nr4Ew2mhpJRcyYliM1XnBJB9MLscO5tHw6g5aDOzNjNpMwdtRk8dPndgYvt3n_-W_y99Ay6hcOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065444254</pqid></control><display><type>article</type><title>Symbolic linearization and vibration analysis of constrained multibody systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Van Khang, Nguyen ; Sy Nam, Nguyen ; Van Quyen, Nguyen</creator><creatorcontrib>Van Khang, Nguyen ; Sy Nam, Nguyen ; Van Quyen, Nguyen</creatorcontrib><description>A computer algebraic approach for linearization of the equations of constrained multibody systems is discussed in this paper. Based on linearized differential equations, the Newmark method is applied to calculate steady-state periodic vibrations of the parametric vibration of constrained dynamical models. The numerical calculation is also demonstrated on a model of a mechanism with elastic connecting link.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-018-1376-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical Mechanics ; Differential equations ; Engineering ; Linearization ; Mathematical models ; Multibody systems ; Original ; Theoretical and Applied Mechanics ; Vibration analysis</subject><ispartof>Archive of applied mechanics (1991), 2018-08, Vol.88 (8), p.1369-1384</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b213b7d852ff38e5525da47bc56f83f2a1e3e0273964086b488e4bb9e8f1ee7b3</citedby><cites>FETCH-LOGICAL-c316t-b213b7d852ff38e5525da47bc56f83f2a1e3e0273964086b488e4bb9e8f1ee7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-018-1376-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-018-1376-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Van Khang, Nguyen</creatorcontrib><creatorcontrib>Sy Nam, Nguyen</creatorcontrib><creatorcontrib>Van Quyen, Nguyen</creatorcontrib><title>Symbolic linearization and vibration analysis of constrained multibody systems</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>A computer algebraic approach for linearization of the equations of constrained multibody systems is discussed in this paper. Based on linearized differential equations, the Newmark method is applied to calculate steady-state periodic vibrations of the parametric vibration of constrained dynamical models. The numerical calculation is also demonstrated on a model of a mechanism with elastic connecting link.</description><subject>Classical Mechanics</subject><subject>Differential equations</subject><subject>Engineering</subject><subject>Linearization</subject><subject>Mathematical models</subject><subject>Multibody systems</subject><subject>Original</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration analysis</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHcB19F8tulSBnWEQRfqOiRtIhnaZszrCPXX26GKK1ePC-deHgehS0avGaXlDVAqWUUo04SJsiD6CC2YFJzQQrNjtKCVqAhTQpyiM4AtnXDF6QI9vYydS22scRt7b3P8skNMPbZ9gz-jy7_JtiNEwCngOvUwZDvRDe727RBdakYMIwy-g3N0EmwL_uLnLtHb_d3rak02zw-Pq9sNqQUrBuI4E65stOIhCO2V4qqxsnS1KoIWgVvmhae8FFUhqS6c1NpL5yqvA_O-dGKJrubdXU4few-D2aZ9nr4Ew2mhpJRcyYliM1XnBJB9MLscO5tHw6g5aDOzNjNpMwdtRk8dPndgYvt3n_-W_y99Ay6hcOE</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Van Khang, Nguyen</creator><creator>Sy Nam, Nguyen</creator><creator>Van Quyen, Nguyen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180801</creationdate><title>Symbolic linearization and vibration analysis of constrained multibody systems</title><author>Van Khang, Nguyen ; Sy Nam, Nguyen ; Van Quyen, Nguyen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b213b7d852ff38e5525da47bc56f83f2a1e3e0273964086b488e4bb9e8f1ee7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classical Mechanics</topic><topic>Differential equations</topic><topic>Engineering</topic><topic>Linearization</topic><topic>Mathematical models</topic><topic>Multibody systems</topic><topic>Original</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Khang, Nguyen</creatorcontrib><creatorcontrib>Sy Nam, Nguyen</creatorcontrib><creatorcontrib>Van Quyen, Nguyen</creatorcontrib><collection>CrossRef</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Khang, Nguyen</au><au>Sy Nam, Nguyen</au><au>Van Quyen, Nguyen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symbolic linearization and vibration analysis of constrained multibody systems</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>88</volume><issue>8</issue><spage>1369</spage><epage>1384</epage><pages>1369-1384</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>A computer algebraic approach for linearization of the equations of constrained multibody systems is discussed in this paper. Based on linearized differential equations, the Newmark method is applied to calculate steady-state periodic vibrations of the parametric vibration of constrained dynamical models. The numerical calculation is also demonstrated on a model of a mechanism with elastic connecting link.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00419-018-1376-8</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0939-1533
ispartof Archive of applied mechanics (1991), 2018-08, Vol.88 (8), p.1369-1384
issn 0939-1533
1432-0681
language eng
recordid cdi_proquest_journals_2065444254
source SpringerLink Journals - AutoHoldings
subjects Classical Mechanics
Differential equations
Engineering
Linearization
Mathematical models
Multibody systems
Original
Theoretical and Applied Mechanics
Vibration analysis
title Symbolic linearization and vibration analysis of constrained multibody systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symbolic%20linearization%20and%20vibration%20analysis%20of%20constrained%20multibody%20systems&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Van%20Khang,%20Nguyen&rft.date=2018-08-01&rft.volume=88&rft.issue=8&rft.spage=1369&rft.epage=1384&rft.pages=1369-1384&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-018-1376-8&rft_dat=%3Cproquest_cross%3E2065444254%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065444254&rft_id=info:pmid/&rfr_iscdi=true