Symbolic linearization and vibration analysis of constrained multibody systems
A computer algebraic approach for linearization of the equations of constrained multibody systems is discussed in this paper. Based on linearized differential equations, the Newmark method is applied to calculate steady-state periodic vibrations of the parametric vibration of constrained dynamical m...
Gespeichert in:
Veröffentlicht in: | Archive of applied mechanics (1991) 2018-08, Vol.88 (8), p.1369-1384 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1384 |
---|---|
container_issue | 8 |
container_start_page | 1369 |
container_title | Archive of applied mechanics (1991) |
container_volume | 88 |
creator | Van Khang, Nguyen Sy Nam, Nguyen Van Quyen, Nguyen |
description | A computer algebraic approach for linearization of the equations of constrained multibody systems is discussed in this paper. Based on linearized differential equations, the Newmark method is applied to calculate steady-state periodic vibrations of the parametric vibration of constrained dynamical models. The numerical calculation is also demonstrated on a model of a mechanism with elastic connecting link. |
doi_str_mv | 10.1007/s00419-018-1376-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2065444254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2065444254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b213b7d852ff38e5525da47bc56f83f2a1e3e0273964086b488e4bb9e8f1ee7b3</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcB19F8tulSBnWEQRfqOiRtIhnaZszrCPXX26GKK1ePC-deHgehS0avGaXlDVAqWUUo04SJsiD6CC2YFJzQQrNjtKCVqAhTQpyiM4AtnXDF6QI9vYydS22scRt7b3P8skNMPbZ9gz-jy7_JtiNEwCngOvUwZDvRDe727RBdakYMIwy-g3N0EmwL_uLnLtHb_d3rak02zw-Pq9sNqQUrBuI4E65stOIhCO2V4qqxsnS1KoIWgVvmhae8FFUhqS6c1NpL5yqvA_O-dGKJrubdXU4few-D2aZ9nr4Ew2mhpJRcyYliM1XnBJB9MLscO5tHw6g5aDOzNjNpMwdtRk8dPndgYvt3n_-W_y99Ay6hcOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065444254</pqid></control><display><type>article</type><title>Symbolic linearization and vibration analysis of constrained multibody systems</title><source>SpringerLink Journals - AutoHoldings</source><creator>Van Khang, Nguyen ; Sy Nam, Nguyen ; Van Quyen, Nguyen</creator><creatorcontrib>Van Khang, Nguyen ; Sy Nam, Nguyen ; Van Quyen, Nguyen</creatorcontrib><description>A computer algebraic approach for linearization of the equations of constrained multibody systems is discussed in this paper. Based on linearized differential equations, the Newmark method is applied to calculate steady-state periodic vibrations of the parametric vibration of constrained dynamical models. The numerical calculation is also demonstrated on a model of a mechanism with elastic connecting link.</description><identifier>ISSN: 0939-1533</identifier><identifier>EISSN: 1432-0681</identifier><identifier>DOI: 10.1007/s00419-018-1376-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical Mechanics ; Differential equations ; Engineering ; Linearization ; Mathematical models ; Multibody systems ; Original ; Theoretical and Applied Mechanics ; Vibration analysis</subject><ispartof>Archive of applied mechanics (1991), 2018-08, Vol.88 (8), p.1369-1384</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b213b7d852ff38e5525da47bc56f83f2a1e3e0273964086b488e4bb9e8f1ee7b3</citedby><cites>FETCH-LOGICAL-c316t-b213b7d852ff38e5525da47bc56f83f2a1e3e0273964086b488e4bb9e8f1ee7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00419-018-1376-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00419-018-1376-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Van Khang, Nguyen</creatorcontrib><creatorcontrib>Sy Nam, Nguyen</creatorcontrib><creatorcontrib>Van Quyen, Nguyen</creatorcontrib><title>Symbolic linearization and vibration analysis of constrained multibody systems</title><title>Archive of applied mechanics (1991)</title><addtitle>Arch Appl Mech</addtitle><description>A computer algebraic approach for linearization of the equations of constrained multibody systems is discussed in this paper. Based on linearized differential equations, the Newmark method is applied to calculate steady-state periodic vibrations of the parametric vibration of constrained dynamical models. The numerical calculation is also demonstrated on a model of a mechanism with elastic connecting link.</description><subject>Classical Mechanics</subject><subject>Differential equations</subject><subject>Engineering</subject><subject>Linearization</subject><subject>Mathematical models</subject><subject>Multibody systems</subject><subject>Original</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration analysis</subject><issn>0939-1533</issn><issn>1432-0681</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHcB19F8tulSBnWEQRfqOiRtIhnaZszrCPXX26GKK1ePC-deHgehS0avGaXlDVAqWUUo04SJsiD6CC2YFJzQQrNjtKCVqAhTQpyiM4AtnXDF6QI9vYydS22scRt7b3P8skNMPbZ9gz-jy7_JtiNEwCngOvUwZDvRDe727RBdakYMIwy-g3N0EmwL_uLnLtHb_d3rak02zw-Pq9sNqQUrBuI4E65stOIhCO2V4qqxsnS1KoIWgVvmhae8FFUhqS6c1NpL5yqvA_O-dGKJrubdXU4few-D2aZ9nr4Ew2mhpJRcyYliM1XnBJB9MLscO5tHw6g5aDOzNjNpMwdtRk8dPndgYvt3n_-W_y99Ay6hcOE</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Van Khang, Nguyen</creator><creator>Sy Nam, Nguyen</creator><creator>Van Quyen, Nguyen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180801</creationdate><title>Symbolic linearization and vibration analysis of constrained multibody systems</title><author>Van Khang, Nguyen ; Sy Nam, Nguyen ; Van Quyen, Nguyen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b213b7d852ff38e5525da47bc56f83f2a1e3e0273964086b488e4bb9e8f1ee7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classical Mechanics</topic><topic>Differential equations</topic><topic>Engineering</topic><topic>Linearization</topic><topic>Mathematical models</topic><topic>Multibody systems</topic><topic>Original</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Khang, Nguyen</creatorcontrib><creatorcontrib>Sy Nam, Nguyen</creatorcontrib><creatorcontrib>Van Quyen, Nguyen</creatorcontrib><collection>CrossRef</collection><jtitle>Archive of applied mechanics (1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Khang, Nguyen</au><au>Sy Nam, Nguyen</au><au>Van Quyen, Nguyen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symbolic linearization and vibration analysis of constrained multibody systems</atitle><jtitle>Archive of applied mechanics (1991)</jtitle><stitle>Arch Appl Mech</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>88</volume><issue>8</issue><spage>1369</spage><epage>1384</epage><pages>1369-1384</pages><issn>0939-1533</issn><eissn>1432-0681</eissn><abstract>A computer algebraic approach for linearization of the equations of constrained multibody systems is discussed in this paper. Based on linearized differential equations, the Newmark method is applied to calculate steady-state periodic vibrations of the parametric vibration of constrained dynamical models. The numerical calculation is also demonstrated on a model of a mechanism with elastic connecting link.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00419-018-1376-8</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0939-1533 |
ispartof | Archive of applied mechanics (1991), 2018-08, Vol.88 (8), p.1369-1384 |
issn | 0939-1533 1432-0681 |
language | eng |
recordid | cdi_proquest_journals_2065444254 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classical Mechanics Differential equations Engineering Linearization Mathematical models Multibody systems Original Theoretical and Applied Mechanics Vibration analysis |
title | Symbolic linearization and vibration analysis of constrained multibody systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symbolic%20linearization%20and%20vibration%20analysis%20of%20constrained%20multibody%20systems&rft.jtitle=Archive%20of%20applied%20mechanics%20(1991)&rft.au=Van%20Khang,%20Nguyen&rft.date=2018-08-01&rft.volume=88&rft.issue=8&rft.spage=1369&rft.epage=1384&rft.pages=1369-1384&rft.issn=0939-1533&rft.eissn=1432-0681&rft_id=info:doi/10.1007/s00419-018-1376-8&rft_dat=%3Cproquest_cross%3E2065444254%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065444254&rft_id=info:pmid/&rfr_iscdi=true |