Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes

•Introduce artificial neural network for regional seismic risk assessment of skewed bridges.•Develop multi-dimensional fragilities for California bridges via artificial neural network.•Reduce computational efforts for developing bridge-class fragility curves.•Estimate the seismic vulnerability of sk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering structures 2018-05, Vol.162, p.166-176
Hauptverfasser: Mangalathu, Sujith, Heo, Gwanghee, Jeon, Jong-Su
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176
container_issue
container_start_page 166
container_title Engineering structures
container_volume 162
creator Mangalathu, Sujith
Heo, Gwanghee
Jeon, Jong-Su
description •Introduce artificial neural network for regional seismic risk assessment of skewed bridges.•Develop multi-dimensional fragilities for California bridges via artificial neural network.•Reduce computational efforts for developing bridge-class fragility curves.•Estimate the seismic vulnerability of skewed bridges. Recent researches are directed towards the regional seismic risk assessment of structures based on a bridge inventory analysis. The framework for traditional regional risk assessments consists of grouping the bridge classes and generating fragility relationships for each bridge class. However, identifying the bridge attributes that dictate the statistically different performances of bridges is often challenging. These attributes also vary depending on the demand parameter under consideration. This paper suggests a multi-parameter fragility methodology using artificial neural network to generate bridge-specific fragility curves without grouping the bridge classes. The proposed methodology helps identify the relative importance of each uncertain parameter on the fragility curves. Results from the case study of skewed box-girder bridges reveal that the ground motion intensity measure, span length, and column longitudinal reinforcement ratio have a significant influence on the seismic fragility of this bridge class.
doi_str_mv 10.1016/j.engstruct.2018.01.053
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2065251880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029617326275</els_id><sourcerecordid>2065251880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-a6887a99746df6a2716cefc3a6e3d9ba189c897b50d63283c47123b8a01309d23</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDURinTC2W8dZVhUvqRIbWFuOPalc0rjYTqv-PYYitqxmcR-aewi5pVBRoOJ-U-GwjimMJlUMqKyAVjDnZ2RCZc3LmjN-TiZAZ7QE1ohLchXjBgCYlDAhbhGS65xxui8GHMPPSQcfPopWR7TFduyTK63b4hCdH7LeBb12vUvHwuIee7_LUip8V8QPPOSE8YMJmLBog7NrLEyvY8R4TS463Ue8-b1T8v748LZ8LlevTy_Lxao0fMZTqYWUtW6aeiZsJzSrqTDYGa4Fctu0msrGyKZu52AFZ5KbWU0Zb6UGyqGxjE_J3al3F_zniDGpjR9DfjwqBmLO5jQPz6765DLBxxiwU7vgtjocFQX1zVVt1B9X9c1VAVWZa04uTknMI_YOg4rG4WDQuoDZa737t-MLBr6Hpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065251880</pqid></control><display><type>article</type><title>Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes</title><source>Elsevier ScienceDirect Journals</source><creator>Mangalathu, Sujith ; Heo, Gwanghee ; Jeon, Jong-Su</creator><creatorcontrib>Mangalathu, Sujith ; Heo, Gwanghee ; Jeon, Jong-Su</creatorcontrib><description>•Introduce artificial neural network for regional seismic risk assessment of skewed bridges.•Develop multi-dimensional fragilities for California bridges via artificial neural network.•Reduce computational efforts for developing bridge-class fragility curves.•Estimate the seismic vulnerability of skewed bridges. Recent researches are directed towards the regional seismic risk assessment of structures based on a bridge inventory analysis. The framework for traditional regional risk assessments consists of grouping the bridge classes and generating fragility relationships for each bridge class. However, identifying the bridge attributes that dictate the statistically different performances of bridges is often challenging. These attributes also vary depending on the demand parameter under consideration. This paper suggests a multi-parameter fragility methodology using artificial neural network to generate bridge-specific fragility curves without grouping the bridge classes. The proposed methodology helps identify the relative importance of each uncertain parameter on the fragility curves. Results from the case study of skewed box-girder bridges reveal that the ground motion intensity measure, span length, and column longitudinal reinforcement ratio have a significant influence on the seismic fragility of this bridge class.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2018.01.053</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Artificial neural network ; Artificial neural networks ; Box girder bridges ; Box girders ; Bridge skew ; Bridges ; Case studies ; Columns (structural) ; Concrete box-girder bridges with seat abutments ; Concrete bridges ; Environmental risk ; Fragility ; Ground motion ; Multi-dimensional fragility curves ; Neural networks ; Parameter identification ; Parameter uncertainty ; Regional analysis ; Regional risk assessment ; Risk assessment ; Seismic activity ; Seismic engineering ; Seismic hazard ; Skew bridges</subject><ispartof>Engineering structures, 2018-05, Vol.162, p.166-176</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-a6887a99746df6a2716cefc3a6e3d9ba189c897b50d63283c47123b8a01309d23</citedby><cites>FETCH-LOGICAL-c343t-a6887a99746df6a2716cefc3a6e3d9ba189c897b50d63283c47123b8a01309d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141029617326275$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mangalathu, Sujith</creatorcontrib><creatorcontrib>Heo, Gwanghee</creatorcontrib><creatorcontrib>Jeon, Jong-Su</creatorcontrib><title>Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes</title><title>Engineering structures</title><description>•Introduce artificial neural network for regional seismic risk assessment of skewed bridges.•Develop multi-dimensional fragilities for California bridges via artificial neural network.•Reduce computational efforts for developing bridge-class fragility curves.•Estimate the seismic vulnerability of skewed bridges. Recent researches are directed towards the regional seismic risk assessment of structures based on a bridge inventory analysis. The framework for traditional regional risk assessments consists of grouping the bridge classes and generating fragility relationships for each bridge class. However, identifying the bridge attributes that dictate the statistically different performances of bridges is often challenging. These attributes also vary depending on the demand parameter under consideration. This paper suggests a multi-parameter fragility methodology using artificial neural network to generate bridge-specific fragility curves without grouping the bridge classes. The proposed methodology helps identify the relative importance of each uncertain parameter on the fragility curves. Results from the case study of skewed box-girder bridges reveal that the ground motion intensity measure, span length, and column longitudinal reinforcement ratio have a significant influence on the seismic fragility of this bridge class.</description><subject>Artificial neural network</subject><subject>Artificial neural networks</subject><subject>Box girder bridges</subject><subject>Box girders</subject><subject>Bridge skew</subject><subject>Bridges</subject><subject>Case studies</subject><subject>Columns (structural)</subject><subject>Concrete box-girder bridges with seat abutments</subject><subject>Concrete bridges</subject><subject>Environmental risk</subject><subject>Fragility</subject><subject>Ground motion</subject><subject>Multi-dimensional fragility curves</subject><subject>Neural networks</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>Regional analysis</subject><subject>Regional risk assessment</subject><subject>Risk assessment</subject><subject>Seismic activity</subject><subject>Seismic engineering</subject><subject>Seismic hazard</subject><subject>Skew bridges</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDURinTC2W8dZVhUvqRIbWFuOPalc0rjYTqv-PYYitqxmcR-aewi5pVBRoOJ-U-GwjimMJlUMqKyAVjDnZ2RCZc3LmjN-TiZAZ7QE1ohLchXjBgCYlDAhbhGS65xxui8GHMPPSQcfPopWR7TFduyTK63b4hCdH7LeBb12vUvHwuIee7_LUip8V8QPPOSE8YMJmLBog7NrLEyvY8R4TS463Ue8-b1T8v748LZ8LlevTy_Lxao0fMZTqYWUtW6aeiZsJzSrqTDYGa4Fctu0msrGyKZu52AFZ5KbWU0Zb6UGyqGxjE_J3al3F_zniDGpjR9DfjwqBmLO5jQPz6765DLBxxiwU7vgtjocFQX1zVVt1B9X9c1VAVWZa04uTknMI_YOg4rG4WDQuoDZa737t-MLBr6Hpg</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Mangalathu, Sujith</creator><creator>Heo, Gwanghee</creator><creator>Jeon, Jong-Su</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20180501</creationdate><title>Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes</title><author>Mangalathu, Sujith ; Heo, Gwanghee ; Jeon, Jong-Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-a6887a99746df6a2716cefc3a6e3d9ba189c897b50d63283c47123b8a01309d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural network</topic><topic>Artificial neural networks</topic><topic>Box girder bridges</topic><topic>Box girders</topic><topic>Bridge skew</topic><topic>Bridges</topic><topic>Case studies</topic><topic>Columns (structural)</topic><topic>Concrete box-girder bridges with seat abutments</topic><topic>Concrete bridges</topic><topic>Environmental risk</topic><topic>Fragility</topic><topic>Ground motion</topic><topic>Multi-dimensional fragility curves</topic><topic>Neural networks</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>Regional analysis</topic><topic>Regional risk assessment</topic><topic>Risk assessment</topic><topic>Seismic activity</topic><topic>Seismic engineering</topic><topic>Seismic hazard</topic><topic>Skew bridges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangalathu, Sujith</creatorcontrib><creatorcontrib>Heo, Gwanghee</creatorcontrib><creatorcontrib>Jeon, Jong-Su</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangalathu, Sujith</au><au>Heo, Gwanghee</au><au>Jeon, Jong-Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes</atitle><jtitle>Engineering structures</jtitle><date>2018-05-01</date><risdate>2018</risdate><volume>162</volume><spage>166</spage><epage>176</epage><pages>166-176</pages><issn>0141-0296</issn><eissn>1873-7323</eissn><abstract>•Introduce artificial neural network for regional seismic risk assessment of skewed bridges.•Develop multi-dimensional fragilities for California bridges via artificial neural network.•Reduce computational efforts for developing bridge-class fragility curves.•Estimate the seismic vulnerability of skewed bridges. Recent researches are directed towards the regional seismic risk assessment of structures based on a bridge inventory analysis. The framework for traditional regional risk assessments consists of grouping the bridge classes and generating fragility relationships for each bridge class. However, identifying the bridge attributes that dictate the statistically different performances of bridges is often challenging. These attributes also vary depending on the demand parameter under consideration. This paper suggests a multi-parameter fragility methodology using artificial neural network to generate bridge-specific fragility curves without grouping the bridge classes. The proposed methodology helps identify the relative importance of each uncertain parameter on the fragility curves. Results from the case study of skewed box-girder bridges reveal that the ground motion intensity measure, span length, and column longitudinal reinforcement ratio have a significant influence on the seismic fragility of this bridge class.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2018.01.053</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-0296
ispartof Engineering structures, 2018-05, Vol.162, p.166-176
issn 0141-0296
1873-7323
language eng
recordid cdi_proquest_journals_2065251880
source Elsevier ScienceDirect Journals
subjects Artificial neural network
Artificial neural networks
Box girder bridges
Box girders
Bridge skew
Bridges
Case studies
Columns (structural)
Concrete box-girder bridges with seat abutments
Concrete bridges
Environmental risk
Fragility
Ground motion
Multi-dimensional fragility curves
Neural networks
Parameter identification
Parameter uncertainty
Regional analysis
Regional risk assessment
Risk assessment
Seismic activity
Seismic engineering
Seismic hazard
Skew bridges
title Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network%20based%20multi-dimensional%20fragility%20development%20of%20skewed%20concrete%20bridge%20classes&rft.jtitle=Engineering%20structures&rft.au=Mangalathu,%20Sujith&rft.date=2018-05-01&rft.volume=162&rft.spage=166&rft.epage=176&rft.pages=166-176&rft.issn=0141-0296&rft.eissn=1873-7323&rft_id=info:doi/10.1016/j.engstruct.2018.01.053&rft_dat=%3Cproquest_cross%3E2065251880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065251880&rft_id=info:pmid/&rft_els_id=S0141029617326275&rfr_iscdi=true