Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes
•Introduce artificial neural network for regional seismic risk assessment of skewed bridges.•Develop multi-dimensional fragilities for California bridges via artificial neural network.•Reduce computational efforts for developing bridge-class fragility curves.•Estimate the seismic vulnerability of sk...
Gespeichert in:
Veröffentlicht in: | Engineering structures 2018-05, Vol.162, p.166-176 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 176 |
---|---|
container_issue | |
container_start_page | 166 |
container_title | Engineering structures |
container_volume | 162 |
creator | Mangalathu, Sujith Heo, Gwanghee Jeon, Jong-Su |
description | •Introduce artificial neural network for regional seismic risk assessment of skewed bridges.•Develop multi-dimensional fragilities for California bridges via artificial neural network.•Reduce computational efforts for developing bridge-class fragility curves.•Estimate the seismic vulnerability of skewed bridges.
Recent researches are directed towards the regional seismic risk assessment of structures based on a bridge inventory analysis. The framework for traditional regional risk assessments consists of grouping the bridge classes and generating fragility relationships for each bridge class. However, identifying the bridge attributes that dictate the statistically different performances of bridges is often challenging. These attributes also vary depending on the demand parameter under consideration. This paper suggests a multi-parameter fragility methodology using artificial neural network to generate bridge-specific fragility curves without grouping the bridge classes. The proposed methodology helps identify the relative importance of each uncertain parameter on the fragility curves. Results from the case study of skewed box-girder bridges reveal that the ground motion intensity measure, span length, and column longitudinal reinforcement ratio have a significant influence on the seismic fragility of this bridge class. |
doi_str_mv | 10.1016/j.engstruct.2018.01.053 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2065251880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029617326275</els_id><sourcerecordid>2065251880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-a6887a99746df6a2716cefc3a6e3d9ba189c897b50d63283c47123b8a01309d23</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDURinTC2W8dZVhUvqRIbWFuOPalc0rjYTqv-PYYitqxmcR-aewi5pVBRoOJ-U-GwjimMJlUMqKyAVjDnZ2RCZc3LmjN-TiZAZ7QE1ohLchXjBgCYlDAhbhGS65xxui8GHMPPSQcfPopWR7TFduyTK63b4hCdH7LeBb12vUvHwuIee7_LUip8V8QPPOSE8YMJmLBog7NrLEyvY8R4TS463Ue8-b1T8v748LZ8LlevTy_Lxao0fMZTqYWUtW6aeiZsJzSrqTDYGa4Fctu0msrGyKZu52AFZ5KbWU0Zb6UGyqGxjE_J3al3F_zniDGpjR9DfjwqBmLO5jQPz6765DLBxxiwU7vgtjocFQX1zVVt1B9X9c1VAVWZa04uTknMI_YOg4rG4WDQuoDZa737t-MLBr6Hpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065251880</pqid></control><display><type>article</type><title>Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes</title><source>Elsevier ScienceDirect Journals</source><creator>Mangalathu, Sujith ; Heo, Gwanghee ; Jeon, Jong-Su</creator><creatorcontrib>Mangalathu, Sujith ; Heo, Gwanghee ; Jeon, Jong-Su</creatorcontrib><description>•Introduce artificial neural network for regional seismic risk assessment of skewed bridges.•Develop multi-dimensional fragilities for California bridges via artificial neural network.•Reduce computational efforts for developing bridge-class fragility curves.•Estimate the seismic vulnerability of skewed bridges.
Recent researches are directed towards the regional seismic risk assessment of structures based on a bridge inventory analysis. The framework for traditional regional risk assessments consists of grouping the bridge classes and generating fragility relationships for each bridge class. However, identifying the bridge attributes that dictate the statistically different performances of bridges is often challenging. These attributes also vary depending on the demand parameter under consideration. This paper suggests a multi-parameter fragility methodology using artificial neural network to generate bridge-specific fragility curves without grouping the bridge classes. The proposed methodology helps identify the relative importance of each uncertain parameter on the fragility curves. Results from the case study of skewed box-girder bridges reveal that the ground motion intensity measure, span length, and column longitudinal reinforcement ratio have a significant influence on the seismic fragility of this bridge class.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2018.01.053</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Artificial neural network ; Artificial neural networks ; Box girder bridges ; Box girders ; Bridge skew ; Bridges ; Case studies ; Columns (structural) ; Concrete box-girder bridges with seat abutments ; Concrete bridges ; Environmental risk ; Fragility ; Ground motion ; Multi-dimensional fragility curves ; Neural networks ; Parameter identification ; Parameter uncertainty ; Regional analysis ; Regional risk assessment ; Risk assessment ; Seismic activity ; Seismic engineering ; Seismic hazard ; Skew bridges</subject><ispartof>Engineering structures, 2018-05, Vol.162, p.166-176</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-a6887a99746df6a2716cefc3a6e3d9ba189c897b50d63283c47123b8a01309d23</citedby><cites>FETCH-LOGICAL-c343t-a6887a99746df6a2716cefc3a6e3d9ba189c897b50d63283c47123b8a01309d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0141029617326275$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Mangalathu, Sujith</creatorcontrib><creatorcontrib>Heo, Gwanghee</creatorcontrib><creatorcontrib>Jeon, Jong-Su</creatorcontrib><title>Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes</title><title>Engineering structures</title><description>•Introduce artificial neural network for regional seismic risk assessment of skewed bridges.•Develop multi-dimensional fragilities for California bridges via artificial neural network.•Reduce computational efforts for developing bridge-class fragility curves.•Estimate the seismic vulnerability of skewed bridges.
Recent researches are directed towards the regional seismic risk assessment of structures based on a bridge inventory analysis. The framework for traditional regional risk assessments consists of grouping the bridge classes and generating fragility relationships for each bridge class. However, identifying the bridge attributes that dictate the statistically different performances of bridges is often challenging. These attributes also vary depending on the demand parameter under consideration. This paper suggests a multi-parameter fragility methodology using artificial neural network to generate bridge-specific fragility curves without grouping the bridge classes. The proposed methodology helps identify the relative importance of each uncertain parameter on the fragility curves. Results from the case study of skewed box-girder bridges reveal that the ground motion intensity measure, span length, and column longitudinal reinforcement ratio have a significant influence on the seismic fragility of this bridge class.</description><subject>Artificial neural network</subject><subject>Artificial neural networks</subject><subject>Box girder bridges</subject><subject>Box girders</subject><subject>Bridge skew</subject><subject>Bridges</subject><subject>Case studies</subject><subject>Columns (structural)</subject><subject>Concrete box-girder bridges with seat abutments</subject><subject>Concrete bridges</subject><subject>Environmental risk</subject><subject>Fragility</subject><subject>Ground motion</subject><subject>Multi-dimensional fragility curves</subject><subject>Neural networks</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>Regional analysis</subject><subject>Regional risk assessment</subject><subject>Risk assessment</subject><subject>Seismic activity</subject><subject>Seismic engineering</subject><subject>Seismic hazard</subject><subject>Skew bridges</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDURinTC2W8dZVhUvqRIbWFuOPalc0rjYTqv-PYYitqxmcR-aewi5pVBRoOJ-U-GwjimMJlUMqKyAVjDnZ2RCZc3LmjN-TiZAZ7QE1ohLchXjBgCYlDAhbhGS65xxui8GHMPPSQcfPopWR7TFduyTK63b4hCdH7LeBb12vUvHwuIee7_LUip8V8QPPOSE8YMJmLBog7NrLEyvY8R4TS463Ue8-b1T8v748LZ8LlevTy_Lxao0fMZTqYWUtW6aeiZsJzSrqTDYGa4Fctu0msrGyKZu52AFZ5KbWU0Zb6UGyqGxjE_J3al3F_zniDGpjR9DfjwqBmLO5jQPz6765DLBxxiwU7vgtjocFQX1zVVt1B9X9c1VAVWZa04uTknMI_YOg4rG4WDQuoDZa737t-MLBr6Hpg</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Mangalathu, Sujith</creator><creator>Heo, Gwanghee</creator><creator>Jeon, Jong-Su</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20180501</creationdate><title>Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes</title><author>Mangalathu, Sujith ; Heo, Gwanghee ; Jeon, Jong-Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-a6887a99746df6a2716cefc3a6e3d9ba189c897b50d63283c47123b8a01309d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural network</topic><topic>Artificial neural networks</topic><topic>Box girder bridges</topic><topic>Box girders</topic><topic>Bridge skew</topic><topic>Bridges</topic><topic>Case studies</topic><topic>Columns (structural)</topic><topic>Concrete box-girder bridges with seat abutments</topic><topic>Concrete bridges</topic><topic>Environmental risk</topic><topic>Fragility</topic><topic>Ground motion</topic><topic>Multi-dimensional fragility curves</topic><topic>Neural networks</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>Regional analysis</topic><topic>Regional risk assessment</topic><topic>Risk assessment</topic><topic>Seismic activity</topic><topic>Seismic engineering</topic><topic>Seismic hazard</topic><topic>Skew bridges</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangalathu, Sujith</creatorcontrib><creatorcontrib>Heo, Gwanghee</creatorcontrib><creatorcontrib>Jeon, Jong-Su</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangalathu, Sujith</au><au>Heo, Gwanghee</au><au>Jeon, Jong-Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes</atitle><jtitle>Engineering structures</jtitle><date>2018-05-01</date><risdate>2018</risdate><volume>162</volume><spage>166</spage><epage>176</epage><pages>166-176</pages><issn>0141-0296</issn><eissn>1873-7323</eissn><abstract>•Introduce artificial neural network for regional seismic risk assessment of skewed bridges.•Develop multi-dimensional fragilities for California bridges via artificial neural network.•Reduce computational efforts for developing bridge-class fragility curves.•Estimate the seismic vulnerability of skewed bridges.
Recent researches are directed towards the regional seismic risk assessment of structures based on a bridge inventory analysis. The framework for traditional regional risk assessments consists of grouping the bridge classes and generating fragility relationships for each bridge class. However, identifying the bridge attributes that dictate the statistically different performances of bridges is often challenging. These attributes also vary depending on the demand parameter under consideration. This paper suggests a multi-parameter fragility methodology using artificial neural network to generate bridge-specific fragility curves without grouping the bridge classes. The proposed methodology helps identify the relative importance of each uncertain parameter on the fragility curves. Results from the case study of skewed box-girder bridges reveal that the ground motion intensity measure, span length, and column longitudinal reinforcement ratio have a significant influence on the seismic fragility of this bridge class.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2018.01.053</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-0296 |
ispartof | Engineering structures, 2018-05, Vol.162, p.166-176 |
issn | 0141-0296 1873-7323 |
language | eng |
recordid | cdi_proquest_journals_2065251880 |
source | Elsevier ScienceDirect Journals |
subjects | Artificial neural network Artificial neural networks Box girder bridges Box girders Bridge skew Bridges Case studies Columns (structural) Concrete box-girder bridges with seat abutments Concrete bridges Environmental risk Fragility Ground motion Multi-dimensional fragility curves Neural networks Parameter identification Parameter uncertainty Regional analysis Regional risk assessment Risk assessment Seismic activity Seismic engineering Seismic hazard Skew bridges |
title | Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network%20based%20multi-dimensional%20fragility%20development%20of%20skewed%20concrete%20bridge%20classes&rft.jtitle=Engineering%20structures&rft.au=Mangalathu,%20Sujith&rft.date=2018-05-01&rft.volume=162&rft.spage=166&rft.epage=176&rft.pages=166-176&rft.issn=0141-0296&rft.eissn=1873-7323&rft_id=info:doi/10.1016/j.engstruct.2018.01.053&rft_dat=%3Cproquest_cross%3E2065251880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065251880&rft_id=info:pmid/&rft_els_id=S0141029617326275&rfr_iscdi=true |