Dynamics of non-ergodic piecewise affine maps of the torus

We discuss the dynamics of a class of non-ergodic piecewise affine maps of the torus. These maps exhibit highly complex and little understood behavior. We present computer graphics of some examples and analyses of some with a decreasing degree of completeness. For the best understood example, we sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2001-08, Vol.21 (4), p.959-999
Hauptverfasser: ADLER, ROY, KITCHENS, BRUCE, TRESSER, CHARLES
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 999
container_issue 4
container_start_page 959
container_title Ergodic theory and dynamical systems
container_volume 21
creator ADLER, ROY
KITCHENS, BRUCE
TRESSER, CHARLES
description We discuss the dynamics of a class of non-ergodic piecewise affine maps of the torus. These maps exhibit highly complex and little understood behavior. We present computer graphics of some examples and analyses of some with a decreasing degree of completeness. For the best understood example, we show that the torus splits into three invariant sets on which the dynamics are quite different. These are: the orbit of the discontinuity set, the complement of this set in its closure, and the complement of the closure. There are still some unsolved problems concerning the orbit of the discontinuity set. However we do know that there are intervals of periodic orbits and at least one infinite orbit. The map on the second invariant set is minimal and uniquely ergodic. The third invariant set is one of full Lebesgue measure and consists of a countable number of open octagons whose points are periodic. Their orbits can be described in terms of a symbolism obtained from an equal length substitution rule or the triadic odometer.
doi_str_mv 10.1017/S0143385701001468
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_206521217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0143385701001468</cupid><sourcerecordid>1398762941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-73d5b09abb315ff184c5c43a96dc21a584a0fb758d51e9bdcdeed0a98be800863</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwi7oHdOI4dbqiFFqiEEOVsOY5dXMgPdiro25PSCg6I06403-yshpBThHME5BdPgCmlgnFA6NdM7JFBP_I4TZHvk8FGjjf6ITkKYQkAFDkbkMvxulaV0yFqbFQ3dWz8oimdjlpntPlwwUTKWlebqFLtN9S9mKhr_CockwOr3oI52c0heb65no-m8exhcju6msWasqSLOS1ZAbkqCorMWhSpZjqlKs9KnaBiIlVgC85EydDkRalLY0pQuSiMABAZHZKz7d3WN-8rEzq5bFa-7iNlAhlLMEHeQ7iFtG9C8MbK1rtK-bVEkJuG5J-Gek-89bjQmc8fg_KvMuOUM5lNHiXe32XjOczltOfpLkNVhXflwvx-8n_KF6RCdgs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206521217</pqid></control><display><type>article</type><title>Dynamics of non-ergodic piecewise affine maps of the torus</title><source>Cambridge Journals - Connect here FIRST to enable access</source><creator>ADLER, ROY ; KITCHENS, BRUCE ; TRESSER, CHARLES</creator><creatorcontrib>ADLER, ROY ; KITCHENS, BRUCE ; TRESSER, CHARLES</creatorcontrib><description>We discuss the dynamics of a class of non-ergodic piecewise affine maps of the torus. These maps exhibit highly complex and little understood behavior. We present computer graphics of some examples and analyses of some with a decreasing degree of completeness. For the best understood example, we show that the torus splits into three invariant sets on which the dynamics are quite different. These are: the orbit of the discontinuity set, the complement of this set in its closure, and the complement of the closure. There are still some unsolved problems concerning the orbit of the discontinuity set. However we do know that there are intervals of periodic orbits and at least one infinite orbit. The map on the second invariant set is minimal and uniquely ergodic. The third invariant set is one of full Lebesgue measure and consists of a countable number of open octagons whose points are periodic. Their orbits can be described in terms of a symbolism obtained from an equal length substitution rule or the triadic odometer.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S0143385701001468</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Ergodic theory and dynamical systems, 2001-08, Vol.21 (4), p.959-999</ispartof><rights>2001 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-73d5b09abb315ff184c5c43a96dc21a584a0fb758d51e9bdcdeed0a98be800863</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385701001468/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>ADLER, ROY</creatorcontrib><creatorcontrib>KITCHENS, BRUCE</creatorcontrib><creatorcontrib>TRESSER, CHARLES</creatorcontrib><title>Dynamics of non-ergodic piecewise affine maps of the torus</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>We discuss the dynamics of a class of non-ergodic piecewise affine maps of the torus. These maps exhibit highly complex and little understood behavior. We present computer graphics of some examples and analyses of some with a decreasing degree of completeness. For the best understood example, we show that the torus splits into three invariant sets on which the dynamics are quite different. These are: the orbit of the discontinuity set, the complement of this set in its closure, and the complement of the closure. There are still some unsolved problems concerning the orbit of the discontinuity set. However we do know that there are intervals of periodic orbits and at least one infinite orbit. The map on the second invariant set is minimal and uniquely ergodic. The third invariant set is one of full Lebesgue measure and consists of a countable number of open octagons whose points are periodic. Their orbits can be described in terms of a symbolism obtained from an equal length substitution rule or the triadic odometer.</description><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1OwzAQhC0EEqXwANwi7oHdOI4dbqiFFqiEEOVsOY5dXMgPdiro25PSCg6I06403-yshpBThHME5BdPgCmlgnFA6NdM7JFBP_I4TZHvk8FGjjf6ITkKYQkAFDkbkMvxulaV0yFqbFQ3dWz8oimdjlpntPlwwUTKWlebqFLtN9S9mKhr_CockwOr3oI52c0heb65no-m8exhcju6msWasqSLOS1ZAbkqCorMWhSpZjqlKs9KnaBiIlVgC85EydDkRalLY0pQuSiMABAZHZKz7d3WN-8rEzq5bFa-7iNlAhlLMEHeQ7iFtG9C8MbK1rtK-bVEkJuG5J-Gek-89bjQmc8fg_KvMuOUM5lNHiXe32XjOczltOfpLkNVhXflwvx-8n_KF6RCdgs</recordid><startdate>200108</startdate><enddate>200108</enddate><creator>ADLER, ROY</creator><creator>KITCHENS, BRUCE</creator><creator>TRESSER, CHARLES</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200108</creationdate><title>Dynamics of non-ergodic piecewise affine maps of the torus</title><author>ADLER, ROY ; KITCHENS, BRUCE ; TRESSER, CHARLES</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-73d5b09abb315ff184c5c43a96dc21a584a0fb758d51e9bdcdeed0a98be800863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ADLER, ROY</creatorcontrib><creatorcontrib>KITCHENS, BRUCE</creatorcontrib><creatorcontrib>TRESSER, CHARLES</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ADLER, ROY</au><au>KITCHENS, BRUCE</au><au>TRESSER, CHARLES</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamics of non-ergodic piecewise affine maps of the torus</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2001-08</date><risdate>2001</risdate><volume>21</volume><issue>4</issue><spage>959</spage><epage>999</epage><pages>959-999</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>We discuss the dynamics of a class of non-ergodic piecewise affine maps of the torus. These maps exhibit highly complex and little understood behavior. We present computer graphics of some examples and analyses of some with a decreasing degree of completeness. For the best understood example, we show that the torus splits into three invariant sets on which the dynamics are quite different. These are: the orbit of the discontinuity set, the complement of this set in its closure, and the complement of the closure. There are still some unsolved problems concerning the orbit of the discontinuity set. However we do know that there are intervals of periodic orbits and at least one infinite orbit. The map on the second invariant set is minimal and uniquely ergodic. The third invariant set is one of full Lebesgue measure and consists of a countable number of open octagons whose points are periodic. Their orbits can be described in terms of a symbolism obtained from an equal length substitution rule or the triadic odometer.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0143385701001468</doi><tpages>41</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2001-08, Vol.21 (4), p.959-999
issn 0143-3857
1469-4417
language eng
recordid cdi_proquest_journals_206521217
source Cambridge Journals - Connect here FIRST to enable access
title Dynamics of non-ergodic piecewise affine maps of the torus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamics%20of%20non-ergodic%20piecewise%20affine%20maps%20of%20the%20torus&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=ADLER,%20ROY&rft.date=2001-08&rft.volume=21&rft.issue=4&rft.spage=959&rft.epage=999&rft.pages=959-999&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S0143385701001468&rft_dat=%3Cproquest_cross%3E1398762941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206521217&rft_id=info:pmid/&rft_cupid=10_1017_S0143385701001468&rfr_iscdi=true