A hyperelliptic realization of the horseshoe and baker maps

We present a generalization of the functional equation for the Weierstrassk $\wp$-function for hyperelliptic surfaces of infinite genus arising from iteration of the horseshoe and baker maps. The ramified cover of these infinite genus surfaces over the complex plane are associated to a quadratic dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2006-12, Vol.26 (6), p.1749-1768
Hauptverfasser: CHAMANARA, R., GARDINER, F. P., LAKIC, N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1768
container_issue 6
container_start_page 1749
container_title Ergodic theory and dynamical systems
container_volume 26
creator CHAMANARA, R.
GARDINER, F. P.
LAKIC, N.
description We present a generalization of the functional equation for the Weierstrassk $\wp$-function for hyperelliptic surfaces of infinite genus arising from iteration of the horseshoe and baker maps. The ramified cover of these infinite genus surfaces over the complex plane are associated to a quadratic differential of finite norm with simple poles accumulating to infinity. We study the geometry of its critical trajectories emanating from these poles and their rate of accumulation.
doi_str_mv 10.1017/S0143385706000484
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_206519655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0143385706000484</cupid><sourcerecordid>1398817911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-cb51b5d5663309f9a75401ae31e963c6e55fd2326903ffc6914f53665cc1863d3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANws7qF219404lS1tCCVfzhbjmOTtGkT7FSiPD2pWsEBcdrDfDOzGkLOObvkjMe9F8YFwEDGDBljYiAOSIcLTCIheHxIOls52urH5CSEecsAj2WHXA1pvqmtt2VZ1E1hqLe6LL50U1QrWjna5JbmlQ825JWlepXRVC-sp0tdh1Ny5HQZ7Nn-dsnb5Pp1dBPNHqa3o-EsMiBFE5lU8lRmEhGAJS7RsRSMawvcJggGrZQu60MfEwbOGUy4cBIQpTF8gJBBl1zscmtffaxtaNS8WvtVW6n6DCVPUMoW4jvI-CoEb52qfbHUfqM4U9uJ1J-JWk-08xShsZ8_Bu0XCmOIpcLpk5rg4_h5fCfUfcvDvkMvU19k7_b3k_9bvgFowHVo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206519655</pqid></control><display><type>article</type><title>A hyperelliptic realization of the horseshoe and baker maps</title><source>Cambridge University Press Journals Complete</source><creator>CHAMANARA, R. ; GARDINER, F. P. ; LAKIC, N.</creator><creatorcontrib>CHAMANARA, R. ; GARDINER, F. P. ; LAKIC, N.</creatorcontrib><description>We present a generalization of the functional equation for the Weierstrassk $\wp$-function for hyperelliptic surfaces of infinite genus arising from iteration of the horseshoe and baker maps. The ramified cover of these infinite genus surfaces over the complex plane are associated to a quadratic differential of finite norm with simple poles accumulating to infinity. We study the geometry of its critical trajectories emanating from these poles and their rate of accumulation.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S0143385706000484</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Ergodic theory and dynamical systems, 2006-12, Vol.26 (6), p.1749-1768</ispartof><rights>2006 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-cb51b5d5663309f9a75401ae31e963c6e55fd2326903ffc6914f53665cc1863d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385706000484/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>CHAMANARA, R.</creatorcontrib><creatorcontrib>GARDINER, F. P.</creatorcontrib><creatorcontrib>LAKIC, N.</creatorcontrib><title>A hyperelliptic realization of the horseshoe and baker maps</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>We present a generalization of the functional equation for the Weierstrassk $\wp$-function for hyperelliptic surfaces of infinite genus arising from iteration of the horseshoe and baker maps. The ramified cover of these infinite genus surfaces over the complex plane are associated to a quadratic differential of finite norm with simple poles accumulating to infinity. We study the geometry of its critical trajectories emanating from these poles and their rate of accumulation.</description><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1OwzAQhC0EEqXwANws7qF219404lS1tCCVfzhbjmOTtGkT7FSiPD2pWsEBcdrDfDOzGkLOObvkjMe9F8YFwEDGDBljYiAOSIcLTCIheHxIOls52urH5CSEecsAj2WHXA1pvqmtt2VZ1E1hqLe6LL50U1QrWjna5JbmlQ825JWlepXRVC-sp0tdh1Ny5HQZ7Nn-dsnb5Pp1dBPNHqa3o-EsMiBFE5lU8lRmEhGAJS7RsRSMawvcJggGrZQu60MfEwbOGUy4cBIQpTF8gJBBl1zscmtffaxtaNS8WvtVW6n6DCVPUMoW4jvI-CoEb52qfbHUfqM4U9uJ1J-JWk-08xShsZ8_Bu0XCmOIpcLpk5rg4_h5fCfUfcvDvkMvU19k7_b3k_9bvgFowHVo</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>CHAMANARA, R.</creator><creator>GARDINER, F. P.</creator><creator>LAKIC, N.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200612</creationdate><title>A hyperelliptic realization of the horseshoe and baker maps</title><author>CHAMANARA, R. ; GARDINER, F. P. ; LAKIC, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-cb51b5d5663309f9a75401ae31e963c6e55fd2326903ffc6914f53665cc1863d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHAMANARA, R.</creatorcontrib><creatorcontrib>GARDINER, F. P.</creatorcontrib><creatorcontrib>LAKIC, N.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHAMANARA, R.</au><au>GARDINER, F. P.</au><au>LAKIC, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hyperelliptic realization of the horseshoe and baker maps</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2006-12</date><risdate>2006</risdate><volume>26</volume><issue>6</issue><spage>1749</spage><epage>1768</epage><pages>1749-1768</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>We present a generalization of the functional equation for the Weierstrassk $\wp$-function for hyperelliptic surfaces of infinite genus arising from iteration of the horseshoe and baker maps. The ramified cover of these infinite genus surfaces over the complex plane are associated to a quadratic differential of finite norm with simple poles accumulating to infinity. We study the geometry of its critical trajectories emanating from these poles and their rate of accumulation.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0143385706000484</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2006-12, Vol.26 (6), p.1749-1768
issn 0143-3857
1469-4417
language eng
recordid cdi_proquest_journals_206519655
source Cambridge University Press Journals Complete
title A hyperelliptic realization of the horseshoe and baker maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hyperelliptic%20realization%20of%20the%20horseshoe%20and%20baker%20maps&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=CHAMANARA,%20R.&rft.date=2006-12&rft.volume=26&rft.issue=6&rft.spage=1749&rft.epage=1768&rft.pages=1749-1768&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S0143385706000484&rft_dat=%3Cproquest_cross%3E1398817911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206519655&rft_id=info:pmid/&rft_cupid=10_1017_S0143385706000484&rfr_iscdi=true