The Burnett expansion of the periodic Lorentz gas

Recently, the stretched exponential decay of multiple correlations in a periodic Lorentz gas has been used to show the convergence of a series of correlations which has a physical interpretation as the fourth-order Burnett coefficient, a generalization of the diffusion coefficient. Here the result i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2003-04, Vol.23 (2), p.481-491
1. Verfasser: DETTMANN, C. P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 491
container_issue 2
container_start_page 481
container_title Ergodic theory and dynamical systems
container_volume 23
creator DETTMANN, C. P.
description Recently, the stretched exponential decay of multiple correlations in a periodic Lorentz gas has been used to show the convergence of a series of correlations which has a physical interpretation as the fourth-order Burnett coefficient, a generalization of the diffusion coefficient. Here the result is extended to include all higher-order Burnett coefficients and a plausible argument is given that the expansion constructed from the Burnett coefficients has a finite radius of convergence.
doi_str_mv 10.1017/S0143385702001359
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_206518232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0143385702001359</cupid><sourcerecordid>1398789111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-82a210480f367f8d16dc6194b0d2959a29a9762359577a2ddecad7d7abb56b6a3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwi7oFdO7bjI1Q0IFX8qEXqzXJip6TQJNipVHh6UrWCA-K0h5lvZzSEnCNcIqC8mgImjKVcAgVAxtUBGWAiVJwkKA_JYCvHW_2YnISwBACGkg8Izl5ddLP2teu6yG1aU4eqqaOmjLpeaJ2vGlsV0aTxru6-ooUJp-SoNO_Bne3vkLyMb2eju3jymN2PridxwRTv4pQaipCkUDIhy9SisIVAleRgqeLKUGWUFLRvyqU01FpXGCutNHnORS4MG5KL3d_WNx9rFzq9bPqefaSmIDimlNHehDtT4ZsQvCt166uV8Z8aQW-H0X-G6Zl4x1Shc5sfwPg3LSSTXIvsWY8fIJvOn6Se9362zzCr3Fd24X6b_J_yDeodchk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206518232</pqid></control><display><type>article</type><title>The Burnett expansion of the periodic Lorentz gas</title><source>Cambridge University Press Journals Complete</source><creator>DETTMANN, C. P.</creator><creatorcontrib>DETTMANN, C. P.</creatorcontrib><description>Recently, the stretched exponential decay of multiple correlations in a periodic Lorentz gas has been used to show the convergence of a series of correlations which has a physical interpretation as the fourth-order Burnett coefficient, a generalization of the diffusion coefficient. Here the result is extended to include all higher-order Burnett coefficients and a plausible argument is given that the expansion constructed from the Burnett coefficients has a finite radius of convergence.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S0143385702001359</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Ergodic theory and dynamical systems, 2003-04, Vol.23 (2), p.481-491</ispartof><rights>2003 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-82a210480f367f8d16dc6194b0d2959a29a9762359577a2ddecad7d7abb56b6a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385702001359/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>DETTMANN, C. P.</creatorcontrib><title>The Burnett expansion of the periodic Lorentz gas</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>Recently, the stretched exponential decay of multiple correlations in a periodic Lorentz gas has been used to show the convergence of a series of correlations which has a physical interpretation as the fourth-order Burnett coefficient, a generalization of the diffusion coefficient. Here the result is extended to include all higher-order Burnett coefficients and a plausible argument is given that the expansion constructed from the Burnett coefficients has a finite radius of convergence.</description><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1OwzAQhC0EEqXwANwi7oFdO7bjI1Q0IFX8qEXqzXJip6TQJNipVHh6UrWCA-K0h5lvZzSEnCNcIqC8mgImjKVcAgVAxtUBGWAiVJwkKA_JYCvHW_2YnISwBACGkg8Izl5ddLP2teu6yG1aU4eqqaOmjLpeaJ2vGlsV0aTxru6-ooUJp-SoNO_Bne3vkLyMb2eju3jymN2PridxwRTv4pQaipCkUDIhy9SisIVAleRgqeLKUGWUFLRvyqU01FpXGCutNHnORS4MG5KL3d_WNx9rFzq9bPqefaSmIDimlNHehDtT4ZsQvCt166uV8Z8aQW-H0X-G6Zl4x1Shc5sfwPg3LSSTXIvsWY8fIJvOn6Se9362zzCr3Fd24X6b_J_yDeodchk</recordid><startdate>20030401</startdate><enddate>20030401</enddate><creator>DETTMANN, C. P.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20030401</creationdate><title>The Burnett expansion of the periodic Lorentz gas</title><author>DETTMANN, C. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-82a210480f367f8d16dc6194b0d2959a29a9762359577a2ddecad7d7abb56b6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DETTMANN, C. P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DETTMANN, C. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Burnett expansion of the periodic Lorentz gas</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2003-04-01</date><risdate>2003</risdate><volume>23</volume><issue>2</issue><spage>481</spage><epage>491</epage><pages>481-491</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>Recently, the stretched exponential decay of multiple correlations in a periodic Lorentz gas has been used to show the convergence of a series of correlations which has a physical interpretation as the fourth-order Burnett coefficient, a generalization of the diffusion coefficient. Here the result is extended to include all higher-order Burnett coefficients and a plausible argument is given that the expansion constructed from the Burnett coefficients has a finite radius of convergence.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0143385702001359</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2003-04, Vol.23 (2), p.481-491
issn 0143-3857
1469-4417
language eng
recordid cdi_proquest_journals_206518232
source Cambridge University Press Journals Complete
title The Burnett expansion of the periodic Lorentz gas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A37%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Burnett%20expansion%20of%20the%20periodic%20Lorentz%20gas&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=DETTMANN,%20C.%20P.&rft.date=2003-04-01&rft.volume=23&rft.issue=2&rft.spage=481&rft.epage=491&rft.pages=481-491&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S0143385702001359&rft_dat=%3Cproquest_cross%3E1398789111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206518232&rft_id=info:pmid/&rft_cupid=10_1017_S0143385702001359&rfr_iscdi=true