Relationships between reflectance and absorbance chlorophyll indices with RGB (Red, Green, Blue) image components in seedlings of tropical tree species at nursery stage

Methods based on RGB (Red, Green, Blue) image segmentation may emerge as a new and low-cost method for estimation the quality of tree seedlings. However, the vast number of indexes based on the use of the RGB image segmentation and the lack of references in the literature still hinder the widespread...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New forests 2019-05, Vol.50 (3), p.377-388
Hauptverfasser: do Amaral, Elizabeth Santos, Vieira Silva, Daniela, Dos Anjos, Letícia, Schilling, Ana Cristina, Dalmolin, Ândrea Carla, Mielke, Marcelo Schramm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue 3
container_start_page 377
container_title New forests
container_volume 50
creator do Amaral, Elizabeth Santos
Vieira Silva, Daniela
Dos Anjos, Letícia
Schilling, Ana Cristina
Dalmolin, Ândrea Carla
Mielke, Marcelo Schramm
description Methods based on RGB (Red, Green, Blue) image segmentation may emerge as a new and low-cost method for estimation the quality of tree seedlings. However, the vast number of indexes based on the use of the RGB image segmentation and the lack of references in the literature still hinder the widespread use of this technology. Thus, we conducted a study aiming to test the relationships between methods based on absorbance and reflectance, widely used for the estimation of chlorophyll contents and physiological status of trees, and ten indexes based on RGB component analysis. We used leaves of five tropical tree species, belonging to different botanical families. Leaf absorbance was measured using the handheld chlorophyll meter SPAD-502, reflectance was measured using a spectrometer and the RGB indices were obtained from digitalized images of the leaves using a flatbed scanner. Modified linear regression models including all five species were used to relate RGB indices to absorbance and reflectance indices. Data collected from leaves of seedlings of five tropical tree species indicated that digital image processing technology can be a useful and rapid nondestructive method for assessment of physiological status of tree seedlings at nursery stage. Among the RGB indexes tested in this study the R, 2R*(G − B)/(G + B) and 2G*(G − B)/(G + B) are the most promising for analysis the tropical seedlings physiological status and quality.
doi_str_mv 10.1007/s11056-018-9662-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2065173732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2065173732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7791776e2ca10cf7566d5e4512e543acdd5b1262e257a90bdae74d22a50c3da33</originalsourceid><addsrcrecordid>eNp1kU1rVDEUhoMoOFZ_gLuAG4VezcdN0ru0xY5CQRjadchNzsykpMk1J0OZf-TPNO0IrlzlBN7nOSQvIe85-8wZM1-Qc6b0wPjFMGkthvEFWXFl5KDYpF6SFeN6GkZxoV-TN4j3jHVKyBX5vYHkWiwZ93FBOkN7BMi0wjaBby57oC4H6mYsdX6--n0qtSz7Y0o05hA9IH2MbU8360v6cQPhnK5rd5zTy3SATzQ-uF2nysNSMuSGHaIIEFLMO6RlS1u3Re9SHwAoLuBjV7pG86Ei1CPF1g1vyautSwjv_p5n5O762-3V9-Hm5_rH1debwUuu22DMxI3RILzjzG-N0jooGBUXoEbpfAhq5kILEMq4ic3BgRmDEE4xL4OT8ox8OHmXWn4dAJu9L4ea-0ormFbcSCNFT_FTyteC2H_LLrU_tB4tZ_apEHsqxPZC7FMhduyMODHYs3kH9Z_5_9AfCl6Qfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065173732</pqid></control><display><type>article</type><title>Relationships between reflectance and absorbance chlorophyll indices with RGB (Red, Green, Blue) image components in seedlings of tropical tree species at nursery stage</title><source>SpringerLink Journals - AutoHoldings</source><creator>do Amaral, Elizabeth Santos ; Vieira Silva, Daniela ; Dos Anjos, Letícia ; Schilling, Ana Cristina ; Dalmolin, Ândrea Carla ; Mielke, Marcelo Schramm</creator><creatorcontrib>do Amaral, Elizabeth Santos ; Vieira Silva, Daniela ; Dos Anjos, Letícia ; Schilling, Ana Cristina ; Dalmolin, Ândrea Carla ; Mielke, Marcelo Schramm</creatorcontrib><description>Methods based on RGB (Red, Green, Blue) image segmentation may emerge as a new and low-cost method for estimation the quality of tree seedlings. However, the vast number of indexes based on the use of the RGB image segmentation and the lack of references in the literature still hinder the widespread use of this technology. Thus, we conducted a study aiming to test the relationships between methods based on absorbance and reflectance, widely used for the estimation of chlorophyll contents and physiological status of trees, and ten indexes based on RGB component analysis. We used leaves of five tropical tree species, belonging to different botanical families. Leaf absorbance was measured using the handheld chlorophyll meter SPAD-502, reflectance was measured using a spectrometer and the RGB indices were obtained from digitalized images of the leaves using a flatbed scanner. Modified linear regression models including all five species were used to relate RGB indices to absorbance and reflectance indices. Data collected from leaves of seedlings of five tropical tree species indicated that digital image processing technology can be a useful and rapid nondestructive method for assessment of physiological status of tree seedlings at nursery stage. Among the RGB indexes tested in this study the R, 2R*(G − B)/(G + B) and 2G*(G − B)/(G + B) are the most promising for analysis the tropical seedlings physiological status and quality.</description><identifier>ISSN: 0169-4286</identifier><identifier>EISSN: 1573-5095</identifier><identifier>DOI: 10.1007/s11056-018-9662-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Absorbance ; Biomedical and Life Sciences ; Chlorophyll ; Digital imaging ; Flatbed ; Forestry ; Image processing ; Image segmentation ; Leaves ; Life Sciences ; Nondestructive testing ; Physiology ; Plant species ; Reflectance ; Regression analysis ; Regression models ; Seedlings ; Species</subject><ispartof>New forests, 2019-05, Vol.50 (3), p.377-388</ispartof><rights>Springer Nature B.V. 2018</rights><rights>New Forests is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7791776e2ca10cf7566d5e4512e543acdd5b1262e257a90bdae74d22a50c3da33</citedby><cites>FETCH-LOGICAL-c316t-7791776e2ca10cf7566d5e4512e543acdd5b1262e257a90bdae74d22a50c3da33</cites><orcidid>0000-0001-6930-2902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11056-018-9662-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11056-018-9662-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>do Amaral, Elizabeth Santos</creatorcontrib><creatorcontrib>Vieira Silva, Daniela</creatorcontrib><creatorcontrib>Dos Anjos, Letícia</creatorcontrib><creatorcontrib>Schilling, Ana Cristina</creatorcontrib><creatorcontrib>Dalmolin, Ândrea Carla</creatorcontrib><creatorcontrib>Mielke, Marcelo Schramm</creatorcontrib><title>Relationships between reflectance and absorbance chlorophyll indices with RGB (Red, Green, Blue) image components in seedlings of tropical tree species at nursery stage</title><title>New forests</title><addtitle>New Forests</addtitle><description>Methods based on RGB (Red, Green, Blue) image segmentation may emerge as a new and low-cost method for estimation the quality of tree seedlings. However, the vast number of indexes based on the use of the RGB image segmentation and the lack of references in the literature still hinder the widespread use of this technology. Thus, we conducted a study aiming to test the relationships between methods based on absorbance and reflectance, widely used for the estimation of chlorophyll contents and physiological status of trees, and ten indexes based on RGB component analysis. We used leaves of five tropical tree species, belonging to different botanical families. Leaf absorbance was measured using the handheld chlorophyll meter SPAD-502, reflectance was measured using a spectrometer and the RGB indices were obtained from digitalized images of the leaves using a flatbed scanner. Modified linear regression models including all five species were used to relate RGB indices to absorbance and reflectance indices. Data collected from leaves of seedlings of five tropical tree species indicated that digital image processing technology can be a useful and rapid nondestructive method for assessment of physiological status of tree seedlings at nursery stage. Among the RGB indexes tested in this study the R, 2R*(G − B)/(G + B) and 2G*(G − B)/(G + B) are the most promising for analysis the tropical seedlings physiological status and quality.</description><subject>Absorbance</subject><subject>Biomedical and Life Sciences</subject><subject>Chlorophyll</subject><subject>Digital imaging</subject><subject>Flatbed</subject><subject>Forestry</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Nondestructive testing</subject><subject>Physiology</subject><subject>Plant species</subject><subject>Reflectance</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Seedlings</subject><subject>Species</subject><issn>0169-4286</issn><issn>1573-5095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kU1rVDEUhoMoOFZ_gLuAG4VezcdN0ru0xY5CQRjadchNzsykpMk1J0OZf-TPNO0IrlzlBN7nOSQvIe85-8wZM1-Qc6b0wPjFMGkthvEFWXFl5KDYpF6SFeN6GkZxoV-TN4j3jHVKyBX5vYHkWiwZ93FBOkN7BMi0wjaBby57oC4H6mYsdX6--n0qtSz7Y0o05hA9IH2MbU8360v6cQPhnK5rd5zTy3SATzQ-uF2nysNSMuSGHaIIEFLMO6RlS1u3Re9SHwAoLuBjV7pG86Ei1CPF1g1vyautSwjv_p5n5O762-3V9-Hm5_rH1debwUuu22DMxI3RILzjzG-N0jooGBUXoEbpfAhq5kILEMq4ic3BgRmDEE4xL4OT8ox8OHmXWn4dAJu9L4ea-0ormFbcSCNFT_FTyteC2H_LLrU_tB4tZ_apEHsqxPZC7FMhduyMODHYs3kH9Z_5_9AfCl6Qfg</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>do Amaral, Elizabeth Santos</creator><creator>Vieira Silva, Daniela</creator><creator>Dos Anjos, Letícia</creator><creator>Schilling, Ana Cristina</creator><creator>Dalmolin, Ândrea Carla</creator><creator>Mielke, Marcelo Schramm</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-6930-2902</orcidid></search><sort><creationdate>20190501</creationdate><title>Relationships between reflectance and absorbance chlorophyll indices with RGB (Red, Green, Blue) image components in seedlings of tropical tree species at nursery stage</title><author>do Amaral, Elizabeth Santos ; Vieira Silva, Daniela ; Dos Anjos, Letícia ; Schilling, Ana Cristina ; Dalmolin, Ândrea Carla ; Mielke, Marcelo Schramm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7791776e2ca10cf7566d5e4512e543acdd5b1262e257a90bdae74d22a50c3da33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorbance</topic><topic>Biomedical and Life Sciences</topic><topic>Chlorophyll</topic><topic>Digital imaging</topic><topic>Flatbed</topic><topic>Forestry</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Nondestructive testing</topic><topic>Physiology</topic><topic>Plant species</topic><topic>Reflectance</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Seedlings</topic><topic>Species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>do Amaral, Elizabeth Santos</creatorcontrib><creatorcontrib>Vieira Silva, Daniela</creatorcontrib><creatorcontrib>Dos Anjos, Letícia</creatorcontrib><creatorcontrib>Schilling, Ana Cristina</creatorcontrib><creatorcontrib>Dalmolin, Ândrea Carla</creatorcontrib><creatorcontrib>Mielke, Marcelo Schramm</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Agriculture Science Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>New forests</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>do Amaral, Elizabeth Santos</au><au>Vieira Silva, Daniela</au><au>Dos Anjos, Letícia</au><au>Schilling, Ana Cristina</au><au>Dalmolin, Ândrea Carla</au><au>Mielke, Marcelo Schramm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relationships between reflectance and absorbance chlorophyll indices with RGB (Red, Green, Blue) image components in seedlings of tropical tree species at nursery stage</atitle><jtitle>New forests</jtitle><stitle>New Forests</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>50</volume><issue>3</issue><spage>377</spage><epage>388</epage><pages>377-388</pages><issn>0169-4286</issn><eissn>1573-5095</eissn><abstract>Methods based on RGB (Red, Green, Blue) image segmentation may emerge as a new and low-cost method for estimation the quality of tree seedlings. However, the vast number of indexes based on the use of the RGB image segmentation and the lack of references in the literature still hinder the widespread use of this technology. Thus, we conducted a study aiming to test the relationships between methods based on absorbance and reflectance, widely used for the estimation of chlorophyll contents and physiological status of trees, and ten indexes based on RGB component analysis. We used leaves of five tropical tree species, belonging to different botanical families. Leaf absorbance was measured using the handheld chlorophyll meter SPAD-502, reflectance was measured using a spectrometer and the RGB indices were obtained from digitalized images of the leaves using a flatbed scanner. Modified linear regression models including all five species were used to relate RGB indices to absorbance and reflectance indices. Data collected from leaves of seedlings of five tropical tree species indicated that digital image processing technology can be a useful and rapid nondestructive method for assessment of physiological status of tree seedlings at nursery stage. Among the RGB indexes tested in this study the R, 2R*(G − B)/(G + B) and 2G*(G − B)/(G + B) are the most promising for analysis the tropical seedlings physiological status and quality.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11056-018-9662-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6930-2902</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0169-4286
ispartof New forests, 2019-05, Vol.50 (3), p.377-388
issn 0169-4286
1573-5095
language eng
recordid cdi_proquest_journals_2065173732
source SpringerLink Journals - AutoHoldings
subjects Absorbance
Biomedical and Life Sciences
Chlorophyll
Digital imaging
Flatbed
Forestry
Image processing
Image segmentation
Leaves
Life Sciences
Nondestructive testing
Physiology
Plant species
Reflectance
Regression analysis
Regression models
Seedlings
Species
title Relationships between reflectance and absorbance chlorophyll indices with RGB (Red, Green, Blue) image components in seedlings of tropical tree species at nursery stage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A46%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relationships%20between%20reflectance%20and%20absorbance%20chlorophyll%20indices%20with%20RGB%20(Red,%20Green,%20Blue)%20image%20components%20in%20seedlings%20of%20tropical%20tree%20species%20at%20nursery%20stage&rft.jtitle=New%20forests&rft.au=do%20Amaral,%20Elizabeth%20Santos&rft.date=2019-05-01&rft.volume=50&rft.issue=3&rft.spage=377&rft.epage=388&rft.pages=377-388&rft.issn=0169-4286&rft.eissn=1573-5095&rft_id=info:doi/10.1007/s11056-018-9662-4&rft_dat=%3Cproquest_cross%3E2065173732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065173732&rft_id=info:pmid/&rfr_iscdi=true