Decomposition and Regularization of the Solution of Ill-Conditioned Inverse Problems in Processing of Measurement Information. Part 1. A Theoretical Evalution of the Method

A theoretical evaluation of a method of solving ill-conditioned inverse problems that arise in mathematicostatistical processing of measurement information under conditions of unavoidable errors in measurements and a mathematical model of the study object is considered. The method is based on physic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement techniques 2018-06, Vol.61 (3), p.223-231
1. Verfasser: Surnin, Yu. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 231
container_issue 3
container_start_page 223
container_title Measurement techniques
container_volume 61
creator Surnin, Yu. V.
description A theoretical evaluation of a method of solving ill-conditioned inverse problems that arise in mathematicostatistical processing of measurement information under conditions of unavoidable errors in measurements and a mathematical model of the study object is considered. The method is based on physical and canonical decomposition of the initial model of the object, specified in the form of a system of linear equations as well as two-sided regularization of the solution of a canonical (diagonal) system of equations. It is shown that through the use of the method it is possible to create an adaptive algorithm for recognition and stable estimation of a group of information parameters of a physically decomposed model.
doi_str_mv 10.1007/s11018-018-1413-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2065170645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A546748640</galeid><sourcerecordid>A546748640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-7b9b53c06d4e4cc4af065620cfb55586ceaab81d3ba49cbcd89461b0e35bfccd3</originalsourceid><addsrcrecordid>eNp1kc1u1DAQgCMEEkvhAbhZ4sQhi73-SXJcLQVWakXVlrNlO5Osq8RebKeCPlMfEmcDqnpA1sg_-r4Z21MU7wleE4yrT5EQTOpyDsIILcWLYkV4Rcu6weJlscKc0ZI01eZ18SbGO4wxrUSzKh4_g_Hj0UebrHdIuRZdQz8NKtgHdTryHUoHQDd-mP7t98NQ7rxrTw60aO_uIURAV8HrAcaIrJvXBmK0rp-NS1BxCjCCS5nufBhPydfoSoWEyBpt0e0BfIBkjRrQ-b16qjZXv4R08O3b4lWnhgjv_s5nxY8v57e7b-XF96_73faiNJSRVFa60ZwaLFoGzBimOiy42GDTac55LQwopWvSUq1YY7Rp64YJojFQrjtjWnpWfFjyHoP_OUFM8s5PweWScpNTkQoLxjO1XqheDSBtflUKyuTRwmhN_pjO5vMtZ6JitWA4Cx-fCZlJ8Cv1aopR7m-un7NkYU3wMQbo5DHYUYXfkmA5d1wuHZdzzB2XIjubxYmZdT2Ep2v_X_oDUUuwlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065170645</pqid></control><display><type>article</type><title>Decomposition and Regularization of the Solution of Ill-Conditioned Inverse Problems in Processing of Measurement Information. Part 1. A Theoretical Evalution of the Method</title><source>SpringerLink Journals - AutoHoldings</source><creator>Surnin, Yu. V.</creator><creatorcontrib>Surnin, Yu. V.</creatorcontrib><description>A theoretical evaluation of a method of solving ill-conditioned inverse problems that arise in mathematicostatistical processing of measurement information under conditions of unavoidable errors in measurements and a mathematical model of the study object is considered. The method is based on physical and canonical decomposition of the initial model of the object, specified in the form of a system of linear equations as well as two-sided regularization of the solution of a canonical (diagonal) system of equations. It is shown that through the use of the method it is possible to create an adaptive algorithm for recognition and stable estimation of a group of information parameters of a physically decomposed model.</description><identifier>ISSN: 0543-1972</identifier><identifier>EISSN: 1573-8906</identifier><identifier>DOI: 10.1007/s11018-018-1413-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive algorithms ; Analytical Chemistry ; Characterization and Evaluation of Materials ; Conditioning ; Decomposition ; Inverse problems ; Linear equations ; Mathematical models ; Measurement Science and Instrumentation ; Physical Chemistry ; Physics ; Physics and Astronomy ; Regularization</subject><ispartof>Measurement techniques, 2018-06, Vol.61 (3), p.223-231</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Measurement Techniques is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11018-018-1413-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11018-018-1413-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Surnin, Yu. V.</creatorcontrib><title>Decomposition and Regularization of the Solution of Ill-Conditioned Inverse Problems in Processing of Measurement Information. Part 1. A Theoretical Evalution of the Method</title><title>Measurement techniques</title><addtitle>Meas Tech</addtitle><description>A theoretical evaluation of a method of solving ill-conditioned inverse problems that arise in mathematicostatistical processing of measurement information under conditions of unavoidable errors in measurements and a mathematical model of the study object is considered. The method is based on physical and canonical decomposition of the initial model of the object, specified in the form of a system of linear equations as well as two-sided regularization of the solution of a canonical (diagonal) system of equations. It is shown that through the use of the method it is possible to create an adaptive algorithm for recognition and stable estimation of a group of information parameters of a physically decomposed model.</description><subject>Adaptive algorithms</subject><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Conditioning</subject><subject>Decomposition</subject><subject>Inverse problems</subject><subject>Linear equations</subject><subject>Mathematical models</subject><subject>Measurement Science and Instrumentation</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regularization</subject><issn>0543-1972</issn><issn>1573-8906</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1u1DAQgCMEEkvhAbhZ4sQhi73-SXJcLQVWakXVlrNlO5Osq8RebKeCPlMfEmcDqnpA1sg_-r4Z21MU7wleE4yrT5EQTOpyDsIILcWLYkV4Rcu6weJlscKc0ZI01eZ18SbGO4wxrUSzKh4_g_Hj0UebrHdIuRZdQz8NKtgHdTryHUoHQDd-mP7t98NQ7rxrTw60aO_uIURAV8HrAcaIrJvXBmK0rp-NS1BxCjCCS5nufBhPydfoSoWEyBpt0e0BfIBkjRrQ-b16qjZXv4R08O3b4lWnhgjv_s5nxY8v57e7b-XF96_73faiNJSRVFa60ZwaLFoGzBimOiy42GDTac55LQwopWvSUq1YY7Rp64YJojFQrjtjWnpWfFjyHoP_OUFM8s5PweWScpNTkQoLxjO1XqheDSBtflUKyuTRwmhN_pjO5vMtZ6JitWA4Cx-fCZlJ8Cv1aopR7m-un7NkYU3wMQbo5DHYUYXfkmA5d1wuHZdzzB2XIjubxYmZdT2Ep2v_X_oDUUuwlA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Surnin, Yu. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20180601</creationdate><title>Decomposition and Regularization of the Solution of Ill-Conditioned Inverse Problems in Processing of Measurement Information. Part 1. A Theoretical Evalution of the Method</title><author>Surnin, Yu. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-7b9b53c06d4e4cc4af065620cfb55586ceaab81d3ba49cbcd89461b0e35bfccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive algorithms</topic><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Conditioning</topic><topic>Decomposition</topic><topic>Inverse problems</topic><topic>Linear equations</topic><topic>Mathematical models</topic><topic>Measurement Science and Instrumentation</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Surnin, Yu. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Measurement techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Surnin, Yu. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decomposition and Regularization of the Solution of Ill-Conditioned Inverse Problems in Processing of Measurement Information. Part 1. A Theoretical Evalution of the Method</atitle><jtitle>Measurement techniques</jtitle><stitle>Meas Tech</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>61</volume><issue>3</issue><spage>223</spage><epage>231</epage><pages>223-231</pages><issn>0543-1972</issn><eissn>1573-8906</eissn><abstract>A theoretical evaluation of a method of solving ill-conditioned inverse problems that arise in mathematicostatistical processing of measurement information under conditions of unavoidable errors in measurements and a mathematical model of the study object is considered. The method is based on physical and canonical decomposition of the initial model of the object, specified in the form of a system of linear equations as well as two-sided regularization of the solution of a canonical (diagonal) system of equations. It is shown that through the use of the method it is possible to create an adaptive algorithm for recognition and stable estimation of a group of information parameters of a physically decomposed model.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11018-018-1413-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0543-1972
ispartof Measurement techniques, 2018-06, Vol.61 (3), p.223-231
issn 0543-1972
1573-8906
language eng
recordid cdi_proquest_journals_2065170645
source SpringerLink Journals - AutoHoldings
subjects Adaptive algorithms
Analytical Chemistry
Characterization and Evaluation of Materials
Conditioning
Decomposition
Inverse problems
Linear equations
Mathematical models
Measurement Science and Instrumentation
Physical Chemistry
Physics
Physics and Astronomy
Regularization
title Decomposition and Regularization of the Solution of Ill-Conditioned Inverse Problems in Processing of Measurement Information. Part 1. A Theoretical Evalution of the Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decomposition%20and%20Regularization%20of%20the%20Solution%20of%20Ill-Conditioned%20Inverse%20Problems%20in%20Processing%20of%20Measurement%20Information.%20Part%201.%20A%20Theoretical%20Evalution%20of%20the%20Method&rft.jtitle=Measurement%20techniques&rft.au=Surnin,%20Yu.%20V.&rft.date=2018-06-01&rft.volume=61&rft.issue=3&rft.spage=223&rft.epage=231&rft.pages=223-231&rft.issn=0543-1972&rft.eissn=1573-8906&rft_id=info:doi/10.1007/s11018-018-1413-6&rft_dat=%3Cgale_proqu%3EA546748640%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065170645&rft_id=info:pmid/&rft_galeid=A546748640&rfr_iscdi=true