Decomposition and Regularization of the Solution of Ill-Conditioned Inverse Problems in Processing of Measurement Information. Part 1. A Theoretical Evalution of the Method
A theoretical evaluation of a method of solving ill-conditioned inverse problems that arise in mathematicostatistical processing of measurement information under conditions of unavoidable errors in measurements and a mathematical model of the study object is considered. The method is based on physic...
Gespeichert in:
Veröffentlicht in: | Measurement techniques 2018-06, Vol.61 (3), p.223-231 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 231 |
---|---|
container_issue | 3 |
container_start_page | 223 |
container_title | Measurement techniques |
container_volume | 61 |
creator | Surnin, Yu. V. |
description | A theoretical evaluation of a method of solving ill-conditioned inverse problems that arise in mathematicostatistical processing of measurement information under conditions of unavoidable errors in measurements and a mathematical model of the study object is considered. The method is based on physical and canonical decomposition of the initial model of the object, specified in the form of a system of linear equations as well as two-sided regularization of the solution of a canonical (diagonal) system of equations. It is shown that through the use of the method it is possible to create an adaptive algorithm for recognition and stable estimation of a group of information parameters of a physically decomposed model. |
doi_str_mv | 10.1007/s11018-018-1413-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2065170645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A546748640</galeid><sourcerecordid>A546748640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-7b9b53c06d4e4cc4af065620cfb55586ceaab81d3ba49cbcd89461b0e35bfccd3</originalsourceid><addsrcrecordid>eNp1kc1u1DAQgCMEEkvhAbhZ4sQhi73-SXJcLQVWakXVlrNlO5Osq8RebKeCPlMfEmcDqnpA1sg_-r4Z21MU7wleE4yrT5EQTOpyDsIILcWLYkV4Rcu6weJlscKc0ZI01eZ18SbGO4wxrUSzKh4_g_Hj0UebrHdIuRZdQz8NKtgHdTryHUoHQDd-mP7t98NQ7rxrTw60aO_uIURAV8HrAcaIrJvXBmK0rp-NS1BxCjCCS5nufBhPydfoSoWEyBpt0e0BfIBkjRrQ-b16qjZXv4R08O3b4lWnhgjv_s5nxY8v57e7b-XF96_73faiNJSRVFa60ZwaLFoGzBimOiy42GDTac55LQwopWvSUq1YY7Rp64YJojFQrjtjWnpWfFjyHoP_OUFM8s5PweWScpNTkQoLxjO1XqheDSBtflUKyuTRwmhN_pjO5vMtZ6JitWA4Cx-fCZlJ8Cv1aopR7m-un7NkYU3wMQbo5DHYUYXfkmA5d1wuHZdzzB2XIjubxYmZdT2Ep2v_X_oDUUuwlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065170645</pqid></control><display><type>article</type><title>Decomposition and Regularization of the Solution of Ill-Conditioned Inverse Problems in Processing of Measurement Information. Part 1. A Theoretical Evalution of the Method</title><source>SpringerLink Journals - AutoHoldings</source><creator>Surnin, Yu. V.</creator><creatorcontrib>Surnin, Yu. V.</creatorcontrib><description>A theoretical evaluation of a method of solving ill-conditioned inverse problems that arise in mathematicostatistical processing of measurement information under conditions of unavoidable errors in measurements and a mathematical model of the study object is considered. The method is based on physical and canonical decomposition of the initial model of the object, specified in the form of a system of linear equations as well as two-sided regularization of the solution of a canonical (diagonal) system of equations. It is shown that through the use of the method it is possible to create an adaptive algorithm for recognition and stable estimation of a group of information parameters of a physically decomposed model.</description><identifier>ISSN: 0543-1972</identifier><identifier>EISSN: 1573-8906</identifier><identifier>DOI: 10.1007/s11018-018-1413-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive algorithms ; Analytical Chemistry ; Characterization and Evaluation of Materials ; Conditioning ; Decomposition ; Inverse problems ; Linear equations ; Mathematical models ; Measurement Science and Instrumentation ; Physical Chemistry ; Physics ; Physics and Astronomy ; Regularization</subject><ispartof>Measurement techniques, 2018-06, Vol.61 (3), p.223-231</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Measurement Techniques is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11018-018-1413-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11018-018-1413-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Surnin, Yu. V.</creatorcontrib><title>Decomposition and Regularization of the Solution of Ill-Conditioned Inverse Problems in Processing of Measurement Information. Part 1. A Theoretical Evalution of the Method</title><title>Measurement techniques</title><addtitle>Meas Tech</addtitle><description>A theoretical evaluation of a method of solving ill-conditioned inverse problems that arise in mathematicostatistical processing of measurement information under conditions of unavoidable errors in measurements and a mathematical model of the study object is considered. The method is based on physical and canonical decomposition of the initial model of the object, specified in the form of a system of linear equations as well as two-sided regularization of the solution of a canonical (diagonal) system of equations. It is shown that through the use of the method it is possible to create an adaptive algorithm for recognition and stable estimation of a group of information parameters of a physically decomposed model.</description><subject>Adaptive algorithms</subject><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Conditioning</subject><subject>Decomposition</subject><subject>Inverse problems</subject><subject>Linear equations</subject><subject>Mathematical models</subject><subject>Measurement Science and Instrumentation</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regularization</subject><issn>0543-1972</issn><issn>1573-8906</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1u1DAQgCMEEkvhAbhZ4sQhi73-SXJcLQVWakXVlrNlO5Osq8RebKeCPlMfEmcDqnpA1sg_-r4Z21MU7wleE4yrT5EQTOpyDsIILcWLYkV4Rcu6weJlscKc0ZI01eZ18SbGO4wxrUSzKh4_g_Hj0UebrHdIuRZdQz8NKtgHdTryHUoHQDd-mP7t98NQ7rxrTw60aO_uIURAV8HrAcaIrJvXBmK0rp-NS1BxCjCCS5nufBhPydfoSoWEyBpt0e0BfIBkjRrQ-b16qjZXv4R08O3b4lWnhgjv_s5nxY8v57e7b-XF96_73faiNJSRVFa60ZwaLFoGzBimOiy42GDTac55LQwopWvSUq1YY7Rp64YJojFQrjtjWnpWfFjyHoP_OUFM8s5PweWScpNTkQoLxjO1XqheDSBtflUKyuTRwmhN_pjO5vMtZ6JitWA4Cx-fCZlJ8Cv1aopR7m-un7NkYU3wMQbo5DHYUYXfkmA5d1wuHZdzzB2XIjubxYmZdT2Ep2v_X_oDUUuwlA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Surnin, Yu. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20180601</creationdate><title>Decomposition and Regularization of the Solution of Ill-Conditioned Inverse Problems in Processing of Measurement Information. Part 1. A Theoretical Evalution of the Method</title><author>Surnin, Yu. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-7b9b53c06d4e4cc4af065620cfb55586ceaab81d3ba49cbcd89461b0e35bfccd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptive algorithms</topic><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Conditioning</topic><topic>Decomposition</topic><topic>Inverse problems</topic><topic>Linear equations</topic><topic>Mathematical models</topic><topic>Measurement Science and Instrumentation</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Surnin, Yu. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Measurement techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Surnin, Yu. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decomposition and Regularization of the Solution of Ill-Conditioned Inverse Problems in Processing of Measurement Information. Part 1. A Theoretical Evalution of the Method</atitle><jtitle>Measurement techniques</jtitle><stitle>Meas Tech</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>61</volume><issue>3</issue><spage>223</spage><epage>231</epage><pages>223-231</pages><issn>0543-1972</issn><eissn>1573-8906</eissn><abstract>A theoretical evaluation of a method of solving ill-conditioned inverse problems that arise in mathematicostatistical processing of measurement information under conditions of unavoidable errors in measurements and a mathematical model of the study object is considered. The method is based on physical and canonical decomposition of the initial model of the object, specified in the form of a system of linear equations as well as two-sided regularization of the solution of a canonical (diagonal) system of equations. It is shown that through the use of the method it is possible to create an adaptive algorithm for recognition and stable estimation of a group of information parameters of a physically decomposed model.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11018-018-1413-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0543-1972 |
ispartof | Measurement techniques, 2018-06, Vol.61 (3), p.223-231 |
issn | 0543-1972 1573-8906 |
language | eng |
recordid | cdi_proquest_journals_2065170645 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adaptive algorithms Analytical Chemistry Characterization and Evaluation of Materials Conditioning Decomposition Inverse problems Linear equations Mathematical models Measurement Science and Instrumentation Physical Chemistry Physics Physics and Astronomy Regularization |
title | Decomposition and Regularization of the Solution of Ill-Conditioned Inverse Problems in Processing of Measurement Information. Part 1. A Theoretical Evalution of the Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T22%3A26%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decomposition%20and%20Regularization%20of%20the%20Solution%20of%20Ill-Conditioned%20Inverse%20Problems%20in%20Processing%20of%20Measurement%20Information.%20Part%201.%20A%20Theoretical%20Evalution%20of%20the%20Method&rft.jtitle=Measurement%20techniques&rft.au=Surnin,%20Yu.%20V.&rft.date=2018-06-01&rft.volume=61&rft.issue=3&rft.spage=223&rft.epage=231&rft.pages=223-231&rft.issn=0543-1972&rft.eissn=1573-8906&rft_id=info:doi/10.1007/s11018-018-1413-6&rft_dat=%3Cgale_proqu%3EA546748640%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065170645&rft_id=info:pmid/&rft_galeid=A546748640&rfr_iscdi=true |