Sequential generation of asymmetric lipid vesicles using a pulsed-jetting method in rotational wells
[Display omitted] •The developed device facilitated a sequential generation of asymmetric giant vesicles.•Three types of asymmetric giant vesicles were produced by a serial operation.•Cinnamycin-mediated translocation of DOPS with a varying condition was determined by using our device. Current metho...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. B, Chemical Chemical, 2018-05, Vol.261, p.392-397 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 397 |
---|---|
container_issue | |
container_start_page | 392 |
container_title | Sensors and actuators. B, Chemical |
container_volume | 261 |
creator | Gotanda, Masahide Kamiya, Koki Osaki, Toshihisa Fujii, Satoshi Misawa, Nobuo Miki, Norihisa Takeuchi, Shoji |
description | [Display omitted]
•The developed device facilitated a sequential generation of asymmetric giant vesicles.•Three types of asymmetric giant vesicles were produced by a serial operation.•Cinnamycin-mediated translocation of DOPS with a varying condition was determined by using our device.
Current methods of generating asymmetric lipid vesicles produce only single types of vesicles, which poses a challenge for investigation of vesicles with different lipid leaflet combinations using a single device. Here, we describe a device for sequentially generating asymmetric lipid giant vesicles (GVs) with various combinations of asymmetric lipid leaflets. Various combinations of planar asymmetric lipid bilayers are formed by sliding and contacting the water in oil (phospholipid) (W/O) droplets in the collecting and jetting wells of our device. Next, we generate asymmetric lipid vesicles using a pulsed-jetting method. We sequentially generate three types of GVs: two asymmetric GVs containing fluorescent-conjugated phospholipids (either (i) rhodamine or (ii) BODIPY) on the outer leaflet, and (iii) a symmetric GV with phosphatidylcholine (PC) on the inner and outer leaflets. The use of asymmetric GVs with various combinations of asymmetric lipid leaflets reveals that increase in membrane phosphatidylethanolamine (PE) concentration influences cinnamycin activity and promotes the phospholipid flip-flop dynamics. This system will be useful for investigating activities of proteins or peptides on GV membranes with various combinations of lipid leaflets. |
doi_str_mv | 10.1016/j.snb.2018.01.149 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2065060453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400518301655</els_id><sourcerecordid>2065060453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-17ad718ec8d6c28f3b579eba83892019d3e308ee29601f1a106e525baba09f063</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHcB1603TR8prmTwBQMu1HVIk9sxpdPWJB2Zf2_Gce3qwuWcwzkfIdcMUgasvO1SPzRpBkykwFKW1ydkwUTFEw5VdUoWUGdFkgMU5-TC-w4Acl7Cgpg3_JpxCFb1dIMDOhXsONCxpcrvt1sMzmra28kaukNvdY-ezt4OG6roNPceTdJhCIdHFH-OhtqBujH8xsTMb-x7f0nOWhW1V393ST4eH95Xz8n69elldb9OdJ6JkLBKmYoJ1MKUOhMtb4qqxkYJLuq4rDYcOQjErC6BtUwxKLHIikY1CuoWSr4kN8fcyY1xlQ-yG2cXa3iZQVlACXnBo4odVdqN3jts5eTsVrm9ZCAPMGUnI0x5gCmByQgzeu6OHoz1dxad9NrioNFYhzpIM9p_3D85534L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065060453</pqid></control><display><type>article</type><title>Sequential generation of asymmetric lipid vesicles using a pulsed-jetting method in rotational wells</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gotanda, Masahide ; Kamiya, Koki ; Osaki, Toshihisa ; Fujii, Satoshi ; Misawa, Nobuo ; Miki, Norihisa ; Takeuchi, Shoji</creator><creatorcontrib>Gotanda, Masahide ; Kamiya, Koki ; Osaki, Toshihisa ; Fujii, Satoshi ; Misawa, Nobuo ; Miki, Norihisa ; Takeuchi, Shoji</creatorcontrib><description>[Display omitted]
•The developed device facilitated a sequential generation of asymmetric giant vesicles.•Three types of asymmetric giant vesicles were produced by a serial operation.•Cinnamycin-mediated translocation of DOPS with a varying condition was determined by using our device.
Current methods of generating asymmetric lipid vesicles produce only single types of vesicles, which poses a challenge for investigation of vesicles with different lipid leaflet combinations using a single device. Here, we describe a device for sequentially generating asymmetric lipid giant vesicles (GVs) with various combinations of asymmetric lipid leaflets. Various combinations of planar asymmetric lipid bilayers are formed by sliding and contacting the water in oil (phospholipid) (W/O) droplets in the collecting and jetting wells of our device. Next, we generate asymmetric lipid vesicles using a pulsed-jetting method. We sequentially generate three types of GVs: two asymmetric GVs containing fluorescent-conjugated phospholipids (either (i) rhodamine or (ii) BODIPY) on the outer leaflet, and (iii) a symmetric GV with phosphatidylcholine (PC) on the inner and outer leaflets. The use of asymmetric GVs with various combinations of asymmetric lipid leaflets reveals that increase in membrane phosphatidylethanolamine (PE) concentration influences cinnamycin activity and promotes the phospholipid flip-flop dynamics. This system will be useful for investigating activities of proteins or peptides on GV membranes with various combinations of lipid leaflets.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2018.01.149</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Artificial cell membrane ; Asymmetric lipid vesicle ; Asymmetry ; Biosensors ; Fluorescence ; Lipid-protein interaction ; Lipids ; Peptides ; Phosphatidylethanolamine ; Phospholipids ; Proteins ; Rhodamine ; Studies ; Transbilayer lipid motion ; Vesicles</subject><ispartof>Sensors and actuators. B, Chemical, 2018-05, Vol.261, p.392-397</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. May 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-17ad718ec8d6c28f3b579eba83892019d3e308ee29601f1a106e525baba09f063</citedby><cites>FETCH-LOGICAL-c428t-17ad718ec8d6c28f3b579eba83892019d3e308ee29601f1a106e525baba09f063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925400518301655$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gotanda, Masahide</creatorcontrib><creatorcontrib>Kamiya, Koki</creatorcontrib><creatorcontrib>Osaki, Toshihisa</creatorcontrib><creatorcontrib>Fujii, Satoshi</creatorcontrib><creatorcontrib>Misawa, Nobuo</creatorcontrib><creatorcontrib>Miki, Norihisa</creatorcontrib><creatorcontrib>Takeuchi, Shoji</creatorcontrib><title>Sequential generation of asymmetric lipid vesicles using a pulsed-jetting method in rotational wells</title><title>Sensors and actuators. B, Chemical</title><description>[Display omitted]
•The developed device facilitated a sequential generation of asymmetric giant vesicles.•Three types of asymmetric giant vesicles were produced by a serial operation.•Cinnamycin-mediated translocation of DOPS with a varying condition was determined by using our device.
Current methods of generating asymmetric lipid vesicles produce only single types of vesicles, which poses a challenge for investigation of vesicles with different lipid leaflet combinations using a single device. Here, we describe a device for sequentially generating asymmetric lipid giant vesicles (GVs) with various combinations of asymmetric lipid leaflets. Various combinations of planar asymmetric lipid bilayers are formed by sliding and contacting the water in oil (phospholipid) (W/O) droplets in the collecting and jetting wells of our device. Next, we generate asymmetric lipid vesicles using a pulsed-jetting method. We sequentially generate three types of GVs: two asymmetric GVs containing fluorescent-conjugated phospholipids (either (i) rhodamine or (ii) BODIPY) on the outer leaflet, and (iii) a symmetric GV with phosphatidylcholine (PC) on the inner and outer leaflets. The use of asymmetric GVs with various combinations of asymmetric lipid leaflets reveals that increase in membrane phosphatidylethanolamine (PE) concentration influences cinnamycin activity and promotes the phospholipid flip-flop dynamics. This system will be useful for investigating activities of proteins or peptides on GV membranes with various combinations of lipid leaflets.</description><subject>Artificial cell membrane</subject><subject>Asymmetric lipid vesicle</subject><subject>Asymmetry</subject><subject>Biosensors</subject><subject>Fluorescence</subject><subject>Lipid-protein interaction</subject><subject>Lipids</subject><subject>Peptides</subject><subject>Phosphatidylethanolamine</subject><subject>Phospholipids</subject><subject>Proteins</subject><subject>Rhodamine</subject><subject>Studies</subject><subject>Transbilayer lipid motion</subject><subject>Vesicles</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHcB1603TR8prmTwBQMu1HVIk9sxpdPWJB2Zf2_Gce3qwuWcwzkfIdcMUgasvO1SPzRpBkykwFKW1ydkwUTFEw5VdUoWUGdFkgMU5-TC-w4Acl7Cgpg3_JpxCFb1dIMDOhXsONCxpcrvt1sMzmra28kaukNvdY-ezt4OG6roNPceTdJhCIdHFH-OhtqBujH8xsTMb-x7f0nOWhW1V393ST4eH95Xz8n69elldb9OdJ6JkLBKmYoJ1MKUOhMtb4qqxkYJLuq4rDYcOQjErC6BtUwxKLHIikY1CuoWSr4kN8fcyY1xlQ-yG2cXa3iZQVlACXnBo4odVdqN3jts5eTsVrm9ZCAPMGUnI0x5gCmByQgzeu6OHoz1dxad9NrioNFYhzpIM9p_3D85534L</recordid><startdate>20180515</startdate><enddate>20180515</enddate><creator>Gotanda, Masahide</creator><creator>Kamiya, Koki</creator><creator>Osaki, Toshihisa</creator><creator>Fujii, Satoshi</creator><creator>Misawa, Nobuo</creator><creator>Miki, Norihisa</creator><creator>Takeuchi, Shoji</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180515</creationdate><title>Sequential generation of asymmetric lipid vesicles using a pulsed-jetting method in rotational wells</title><author>Gotanda, Masahide ; Kamiya, Koki ; Osaki, Toshihisa ; Fujii, Satoshi ; Misawa, Nobuo ; Miki, Norihisa ; Takeuchi, Shoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-17ad718ec8d6c28f3b579eba83892019d3e308ee29601f1a106e525baba09f063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial cell membrane</topic><topic>Asymmetric lipid vesicle</topic><topic>Asymmetry</topic><topic>Biosensors</topic><topic>Fluorescence</topic><topic>Lipid-protein interaction</topic><topic>Lipids</topic><topic>Peptides</topic><topic>Phosphatidylethanolamine</topic><topic>Phospholipids</topic><topic>Proteins</topic><topic>Rhodamine</topic><topic>Studies</topic><topic>Transbilayer lipid motion</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gotanda, Masahide</creatorcontrib><creatorcontrib>Kamiya, Koki</creatorcontrib><creatorcontrib>Osaki, Toshihisa</creatorcontrib><creatorcontrib>Fujii, Satoshi</creatorcontrib><creatorcontrib>Misawa, Nobuo</creatorcontrib><creatorcontrib>Miki, Norihisa</creatorcontrib><creatorcontrib>Takeuchi, Shoji</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gotanda, Masahide</au><au>Kamiya, Koki</au><au>Osaki, Toshihisa</au><au>Fujii, Satoshi</au><au>Misawa, Nobuo</au><au>Miki, Norihisa</au><au>Takeuchi, Shoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential generation of asymmetric lipid vesicles using a pulsed-jetting method in rotational wells</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2018-05-15</date><risdate>2018</risdate><volume>261</volume><spage>392</spage><epage>397</epage><pages>392-397</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>[Display omitted]
•The developed device facilitated a sequential generation of asymmetric giant vesicles.•Three types of asymmetric giant vesicles were produced by a serial operation.•Cinnamycin-mediated translocation of DOPS with a varying condition was determined by using our device.
Current methods of generating asymmetric lipid vesicles produce only single types of vesicles, which poses a challenge for investigation of vesicles with different lipid leaflet combinations using a single device. Here, we describe a device for sequentially generating asymmetric lipid giant vesicles (GVs) with various combinations of asymmetric lipid leaflets. Various combinations of planar asymmetric lipid bilayers are formed by sliding and contacting the water in oil (phospholipid) (W/O) droplets in the collecting and jetting wells of our device. Next, we generate asymmetric lipid vesicles using a pulsed-jetting method. We sequentially generate three types of GVs: two asymmetric GVs containing fluorescent-conjugated phospholipids (either (i) rhodamine or (ii) BODIPY) on the outer leaflet, and (iii) a symmetric GV with phosphatidylcholine (PC) on the inner and outer leaflets. The use of asymmetric GVs with various combinations of asymmetric lipid leaflets reveals that increase in membrane phosphatidylethanolamine (PE) concentration influences cinnamycin activity and promotes the phospholipid flip-flop dynamics. This system will be useful for investigating activities of proteins or peptides on GV membranes with various combinations of lipid leaflets.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2018.01.149</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-4005 |
ispartof | Sensors and actuators. B, Chemical, 2018-05, Vol.261, p.392-397 |
issn | 0925-4005 1873-3077 |
language | eng |
recordid | cdi_proquest_journals_2065060453 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Artificial cell membrane Asymmetric lipid vesicle Asymmetry Biosensors Fluorescence Lipid-protein interaction Lipids Peptides Phosphatidylethanolamine Phospholipids Proteins Rhodamine Studies Transbilayer lipid motion Vesicles |
title | Sequential generation of asymmetric lipid vesicles using a pulsed-jetting method in rotational wells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20generation%20of%20asymmetric%20lipid%20vesicles%20using%20a%20pulsed-jetting%20method%20in%20rotational%20wells&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Gotanda,%20Masahide&rft.date=2018-05-15&rft.volume=261&rft.spage=392&rft.epage=397&rft.pages=392-397&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2018.01.149&rft_dat=%3Cproquest_cross%3E2065060453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065060453&rft_id=info:pmid/&rft_els_id=S0925400518301655&rfr_iscdi=true |