Sequential generation of asymmetric lipid vesicles using a pulsed-jetting method in rotational wells

[Display omitted] •The developed device facilitated a sequential generation of asymmetric giant vesicles.•Three types of asymmetric giant vesicles were produced by a serial operation.•Cinnamycin-mediated translocation of DOPS with a varying condition was determined by using our device. Current metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2018-05, Vol.261, p.392-397
Hauptverfasser: Gotanda, Masahide, Kamiya, Koki, Osaki, Toshihisa, Fujii, Satoshi, Misawa, Nobuo, Miki, Norihisa, Takeuchi, Shoji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 397
container_issue
container_start_page 392
container_title Sensors and actuators. B, Chemical
container_volume 261
creator Gotanda, Masahide
Kamiya, Koki
Osaki, Toshihisa
Fujii, Satoshi
Misawa, Nobuo
Miki, Norihisa
Takeuchi, Shoji
description [Display omitted] •The developed device facilitated a sequential generation of asymmetric giant vesicles.•Three types of asymmetric giant vesicles were produced by a serial operation.•Cinnamycin-mediated translocation of DOPS with a varying condition was determined by using our device. Current methods of generating asymmetric lipid vesicles produce only single types of vesicles, which poses a challenge for investigation of vesicles with different lipid leaflet combinations using a single device. Here, we describe a device for sequentially generating asymmetric lipid giant vesicles (GVs) with various combinations of asymmetric lipid leaflets. Various combinations of planar asymmetric lipid bilayers are formed by sliding and contacting the water in oil (phospholipid) (W/O) droplets in the collecting and jetting wells of our device. Next, we generate asymmetric lipid vesicles using a pulsed-jetting method. We sequentially generate three types of GVs: two asymmetric GVs containing fluorescent-conjugated phospholipids (either (i) rhodamine or (ii) BODIPY) on the outer leaflet, and (iii) a symmetric GV with phosphatidylcholine (PC) on the inner and outer leaflets. The use of asymmetric GVs with various combinations of asymmetric lipid leaflets reveals that increase in membrane phosphatidylethanolamine (PE) concentration influences cinnamycin activity and promotes the phospholipid flip-flop dynamics. This system will be useful for investigating activities of proteins or peptides on GV membranes with various combinations of lipid leaflets.
doi_str_mv 10.1016/j.snb.2018.01.149
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2065060453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400518301655</els_id><sourcerecordid>2065060453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-17ad718ec8d6c28f3b579eba83892019d3e308ee29601f1a106e525baba09f063</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHcB1603TR8prmTwBQMu1HVIk9sxpdPWJB2Zf2_Gce3qwuWcwzkfIdcMUgasvO1SPzRpBkykwFKW1ydkwUTFEw5VdUoWUGdFkgMU5-TC-w4Acl7Cgpg3_JpxCFb1dIMDOhXsONCxpcrvt1sMzmra28kaukNvdY-ezt4OG6roNPceTdJhCIdHFH-OhtqBujH8xsTMb-x7f0nOWhW1V393ST4eH95Xz8n69elldb9OdJ6JkLBKmYoJ1MKUOhMtb4qqxkYJLuq4rDYcOQjErC6BtUwxKLHIikY1CuoWSr4kN8fcyY1xlQ-yG2cXa3iZQVlACXnBo4odVdqN3jts5eTsVrm9ZCAPMGUnI0x5gCmByQgzeu6OHoz1dxad9NrioNFYhzpIM9p_3D85534L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065060453</pqid></control><display><type>article</type><title>Sequential generation of asymmetric lipid vesicles using a pulsed-jetting method in rotational wells</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Gotanda, Masahide ; Kamiya, Koki ; Osaki, Toshihisa ; Fujii, Satoshi ; Misawa, Nobuo ; Miki, Norihisa ; Takeuchi, Shoji</creator><creatorcontrib>Gotanda, Masahide ; Kamiya, Koki ; Osaki, Toshihisa ; Fujii, Satoshi ; Misawa, Nobuo ; Miki, Norihisa ; Takeuchi, Shoji</creatorcontrib><description>[Display omitted] •The developed device facilitated a sequential generation of asymmetric giant vesicles.•Three types of asymmetric giant vesicles were produced by a serial operation.•Cinnamycin-mediated translocation of DOPS with a varying condition was determined by using our device. Current methods of generating asymmetric lipid vesicles produce only single types of vesicles, which poses a challenge for investigation of vesicles with different lipid leaflet combinations using a single device. Here, we describe a device for sequentially generating asymmetric lipid giant vesicles (GVs) with various combinations of asymmetric lipid leaflets. Various combinations of planar asymmetric lipid bilayers are formed by sliding and contacting the water in oil (phospholipid) (W/O) droplets in the collecting and jetting wells of our device. Next, we generate asymmetric lipid vesicles using a pulsed-jetting method. We sequentially generate three types of GVs: two asymmetric GVs containing fluorescent-conjugated phospholipids (either (i) rhodamine or (ii) BODIPY) on the outer leaflet, and (iii) a symmetric GV with phosphatidylcholine (PC) on the inner and outer leaflets. The use of asymmetric GVs with various combinations of asymmetric lipid leaflets reveals that increase in membrane phosphatidylethanolamine (PE) concentration influences cinnamycin activity and promotes the phospholipid flip-flop dynamics. This system will be useful for investigating activities of proteins or peptides on GV membranes with various combinations of lipid leaflets.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2018.01.149</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Artificial cell membrane ; Asymmetric lipid vesicle ; Asymmetry ; Biosensors ; Fluorescence ; Lipid-protein interaction ; Lipids ; Peptides ; Phosphatidylethanolamine ; Phospholipids ; Proteins ; Rhodamine ; Studies ; Transbilayer lipid motion ; Vesicles</subject><ispartof>Sensors and actuators. B, Chemical, 2018-05, Vol.261, p.392-397</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. May 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-17ad718ec8d6c28f3b579eba83892019d3e308ee29601f1a106e525baba09f063</citedby><cites>FETCH-LOGICAL-c428t-17ad718ec8d6c28f3b579eba83892019d3e308ee29601f1a106e525baba09f063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925400518301655$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Gotanda, Masahide</creatorcontrib><creatorcontrib>Kamiya, Koki</creatorcontrib><creatorcontrib>Osaki, Toshihisa</creatorcontrib><creatorcontrib>Fujii, Satoshi</creatorcontrib><creatorcontrib>Misawa, Nobuo</creatorcontrib><creatorcontrib>Miki, Norihisa</creatorcontrib><creatorcontrib>Takeuchi, Shoji</creatorcontrib><title>Sequential generation of asymmetric lipid vesicles using a pulsed-jetting method in rotational wells</title><title>Sensors and actuators. B, Chemical</title><description>[Display omitted] •The developed device facilitated a sequential generation of asymmetric giant vesicles.•Three types of asymmetric giant vesicles were produced by a serial operation.•Cinnamycin-mediated translocation of DOPS with a varying condition was determined by using our device. Current methods of generating asymmetric lipid vesicles produce only single types of vesicles, which poses a challenge for investigation of vesicles with different lipid leaflet combinations using a single device. Here, we describe a device for sequentially generating asymmetric lipid giant vesicles (GVs) with various combinations of asymmetric lipid leaflets. Various combinations of planar asymmetric lipid bilayers are formed by sliding and contacting the water in oil (phospholipid) (W/O) droplets in the collecting and jetting wells of our device. Next, we generate asymmetric lipid vesicles using a pulsed-jetting method. We sequentially generate three types of GVs: two asymmetric GVs containing fluorescent-conjugated phospholipids (either (i) rhodamine or (ii) BODIPY) on the outer leaflet, and (iii) a symmetric GV with phosphatidylcholine (PC) on the inner and outer leaflets. The use of asymmetric GVs with various combinations of asymmetric lipid leaflets reveals that increase in membrane phosphatidylethanolamine (PE) concentration influences cinnamycin activity and promotes the phospholipid flip-flop dynamics. This system will be useful for investigating activities of proteins or peptides on GV membranes with various combinations of lipid leaflets.</description><subject>Artificial cell membrane</subject><subject>Asymmetric lipid vesicle</subject><subject>Asymmetry</subject><subject>Biosensors</subject><subject>Fluorescence</subject><subject>Lipid-protein interaction</subject><subject>Lipids</subject><subject>Peptides</subject><subject>Phosphatidylethanolamine</subject><subject>Phospholipids</subject><subject>Proteins</subject><subject>Rhodamine</subject><subject>Studies</subject><subject>Transbilayer lipid motion</subject><subject>Vesicles</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHcB1603TR8prmTwBQMu1HVIk9sxpdPWJB2Zf2_Gce3qwuWcwzkfIdcMUgasvO1SPzRpBkykwFKW1ydkwUTFEw5VdUoWUGdFkgMU5-TC-w4Acl7Cgpg3_JpxCFb1dIMDOhXsONCxpcrvt1sMzmra28kaukNvdY-ezt4OG6roNPceTdJhCIdHFH-OhtqBujH8xsTMb-x7f0nOWhW1V393ST4eH95Xz8n69elldb9OdJ6JkLBKmYoJ1MKUOhMtb4qqxkYJLuq4rDYcOQjErC6BtUwxKLHIikY1CuoWSr4kN8fcyY1xlQ-yG2cXa3iZQVlACXnBo4odVdqN3jts5eTsVrm9ZCAPMGUnI0x5gCmByQgzeu6OHoz1dxad9NrioNFYhzpIM9p_3D85534L</recordid><startdate>20180515</startdate><enddate>20180515</enddate><creator>Gotanda, Masahide</creator><creator>Kamiya, Koki</creator><creator>Osaki, Toshihisa</creator><creator>Fujii, Satoshi</creator><creator>Misawa, Nobuo</creator><creator>Miki, Norihisa</creator><creator>Takeuchi, Shoji</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180515</creationdate><title>Sequential generation of asymmetric lipid vesicles using a pulsed-jetting method in rotational wells</title><author>Gotanda, Masahide ; Kamiya, Koki ; Osaki, Toshihisa ; Fujii, Satoshi ; Misawa, Nobuo ; Miki, Norihisa ; Takeuchi, Shoji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-17ad718ec8d6c28f3b579eba83892019d3e308ee29601f1a106e525baba09f063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial cell membrane</topic><topic>Asymmetric lipid vesicle</topic><topic>Asymmetry</topic><topic>Biosensors</topic><topic>Fluorescence</topic><topic>Lipid-protein interaction</topic><topic>Lipids</topic><topic>Peptides</topic><topic>Phosphatidylethanolamine</topic><topic>Phospholipids</topic><topic>Proteins</topic><topic>Rhodamine</topic><topic>Studies</topic><topic>Transbilayer lipid motion</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gotanda, Masahide</creatorcontrib><creatorcontrib>Kamiya, Koki</creatorcontrib><creatorcontrib>Osaki, Toshihisa</creatorcontrib><creatorcontrib>Fujii, Satoshi</creatorcontrib><creatorcontrib>Misawa, Nobuo</creatorcontrib><creatorcontrib>Miki, Norihisa</creatorcontrib><creatorcontrib>Takeuchi, Shoji</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gotanda, Masahide</au><au>Kamiya, Koki</au><au>Osaki, Toshihisa</au><au>Fujii, Satoshi</au><au>Misawa, Nobuo</au><au>Miki, Norihisa</au><au>Takeuchi, Shoji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential generation of asymmetric lipid vesicles using a pulsed-jetting method in rotational wells</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2018-05-15</date><risdate>2018</risdate><volume>261</volume><spage>392</spage><epage>397</epage><pages>392-397</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>[Display omitted] •The developed device facilitated a sequential generation of asymmetric giant vesicles.•Three types of asymmetric giant vesicles were produced by a serial operation.•Cinnamycin-mediated translocation of DOPS with a varying condition was determined by using our device. Current methods of generating asymmetric lipid vesicles produce only single types of vesicles, which poses a challenge for investigation of vesicles with different lipid leaflet combinations using a single device. Here, we describe a device for sequentially generating asymmetric lipid giant vesicles (GVs) with various combinations of asymmetric lipid leaflets. Various combinations of planar asymmetric lipid bilayers are formed by sliding and contacting the water in oil (phospholipid) (W/O) droplets in the collecting and jetting wells of our device. Next, we generate asymmetric lipid vesicles using a pulsed-jetting method. We sequentially generate three types of GVs: two asymmetric GVs containing fluorescent-conjugated phospholipids (either (i) rhodamine or (ii) BODIPY) on the outer leaflet, and (iii) a symmetric GV with phosphatidylcholine (PC) on the inner and outer leaflets. The use of asymmetric GVs with various combinations of asymmetric lipid leaflets reveals that increase in membrane phosphatidylethanolamine (PE) concentration influences cinnamycin activity and promotes the phospholipid flip-flop dynamics. This system will be useful for investigating activities of proteins or peptides on GV membranes with various combinations of lipid leaflets.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2018.01.149</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2018-05, Vol.261, p.392-397
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_journals_2065060453
source Elsevier ScienceDirect Journals Complete
subjects Artificial cell membrane
Asymmetric lipid vesicle
Asymmetry
Biosensors
Fluorescence
Lipid-protein interaction
Lipids
Peptides
Phosphatidylethanolamine
Phospholipids
Proteins
Rhodamine
Studies
Transbilayer lipid motion
Vesicles
title Sequential generation of asymmetric lipid vesicles using a pulsed-jetting method in rotational wells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20generation%20of%20asymmetric%20lipid%20vesicles%20using%20a%20pulsed-jetting%20method%20in%20rotational%20wells&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Gotanda,%20Masahide&rft.date=2018-05-15&rft.volume=261&rft.spage=392&rft.epage=397&rft.pages=392-397&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2018.01.149&rft_dat=%3Cproquest_cross%3E2065060453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065060453&rft_id=info:pmid/&rft_els_id=S0925400518301655&rfr_iscdi=true