Investigation of electrochemical performance on carbon supported tin-selenium bimetallic anodes in lithium-ion batteries

Bimetallic compound, composed of two different metal elements, has emerged as an important class of electrode system. Amorphous carbon materials are widely used in anodes to reduce the internal resistance of electrodes. Therefore, SnSe bimetallic compound uniformly dispersed in acetylene black as a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2018-03, Vol.266, p.193-201
Hauptverfasser: Yoon, Young Hoon, Kim, Doo Soo, Kim, MinJung, Park, Min Sang, Lee, Young-Chul, Kim, Kwang Ho, Kim, Il Tae, Hur, Jaehyun, Lee, Seung Geol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201
container_issue
container_start_page 193
container_title Electrochimica acta
container_volume 266
creator Yoon, Young Hoon
Kim, Doo Soo
Kim, MinJung
Park, Min Sang
Lee, Young-Chul
Kim, Kwang Ho
Kim, Il Tae
Hur, Jaehyun
Lee, Seung Geol
description Bimetallic compound, composed of two different metal elements, has emerged as an important class of electrode system. Amorphous carbon materials are widely used in anodes to reduce the internal resistance of electrodes. Therefore, SnSe bimetallic compound uniformly dispersed in acetylene black as a carbon-support has been fabricated for lithium ion batteries by high energy mechanical milling (HEMM) process under argon atmosphere. The SnSe-C composite retains a reversible capacity of 564 mAh g−1 with a coulombic efficiency of 99.8%, at a current rate of 100 mA g−1 after 50 cycles. In the high rate capability test, the SnSe-C composite exhibits the charge capacity of 530 mAh g−1 at 5000 mA g−1 charge rate. Electrochemical impedance spectroscopy (EIS) results indicate that SnSe-C composite shows small increase of surface resistance than that of plain SnSe composite. The enhanced cycle stability of SnSe-C composite can be attributed to the amorphous carbon additive that offers high electrical conductivity as well as a buffer matrix that prevents the volume change during cycling.
doi_str_mv 10.1016/j.electacta.2017.12.188
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2065057957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468617327627</els_id><sourcerecordid>2065057957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-91d19af78320e50cde1ffc1f6d2d73051db363ae57ea0f6e2c314f47326a9b7c3</originalsourceid><addsrcrecordid>eNqFkEFr3DAQhUVoodttfkMFPdsZWWvJPobQJAsLuSRnIUujRIttOZJ2af59tN2Qa2BgDvPeG95HyG8GNQMmrvY1jmiyLlM3wGTNmpp13QVZsU7yindt_42sABivNqITP8jPlPYAIIWEFfm3nY-Ysn_W2YeZBkf_p8VgXnDyRo90wehCnPRskBaF0XEoKx2WJcSMlmY_V6mYZn-Y6OAnzHocvaF6DhYT9TMdfX4px-r0YNA5Y_SYfpHvTo8JLz_2mjzd_n28ua92D3fbm-tdZXgHueqZZb12suMNYAvGInPOMCdsYyWHltmBC66xlajBCWwMZxu3kbwRuh-k4Wvy55y7xPB6KFXVPhziXF6qBkQLrexbWVTyrDIxpBTRqSX6Scc3xUCdMKu9-sSsTpgVa1TBXJzXZyeWEkePUSXjscCyPha9ssF_mfEOBWqN6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065057957</pqid></control><display><type>article</type><title>Investigation of electrochemical performance on carbon supported tin-selenium bimetallic anodes in lithium-ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Yoon, Young Hoon ; Kim, Doo Soo ; Kim, MinJung ; Park, Min Sang ; Lee, Young-Chul ; Kim, Kwang Ho ; Kim, Il Tae ; Hur, Jaehyun ; Lee, Seung Geol</creator><creatorcontrib>Yoon, Young Hoon ; Kim, Doo Soo ; Kim, MinJung ; Park, Min Sang ; Lee, Young-Chul ; Kim, Kwang Ho ; Kim, Il Tae ; Hur, Jaehyun ; Lee, Seung Geol</creatorcontrib><description>Bimetallic compound, composed of two different metal elements, has emerged as an important class of electrode system. Amorphous carbon materials are widely used in anodes to reduce the internal resistance of electrodes. Therefore, SnSe bimetallic compound uniformly dispersed in acetylene black as a carbon-support has been fabricated for lithium ion batteries by high energy mechanical milling (HEMM) process under argon atmosphere. The SnSe-C composite retains a reversible capacity of 564 mAh g−1 with a coulombic efficiency of 99.8%, at a current rate of 100 mA g−1 after 50 cycles. In the high rate capability test, the SnSe-C composite exhibits the charge capacity of 530 mAh g−1 at 5000 mA g−1 charge rate. Electrochemical impedance spectroscopy (EIS) results indicate that SnSe-C composite shows small increase of surface resistance than that of plain SnSe composite. The enhanced cycle stability of SnSe-C composite can be attributed to the amorphous carbon additive that offers high electrical conductivity as well as a buffer matrix that prevents the volume change during cycling.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2017.12.188</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Acetylene ; Amorphous materials ; Anode material ; Anodes ; Batteries ; Bimetallic system ; Bimetals ; Carbon-support ; Conductivity ; Electrical resistivity ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrochemical performance ; Electrodes ; Lithium ; Lithium-ion batteries ; Mechanical milling ; Rechargeable batteries ; Selenium ; Surface resistance ; Tin ; Tin-selenium</subject><ispartof>Electrochimica acta, 2018-03, Vol.266, p.193-201</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 10, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-91d19af78320e50cde1ffc1f6d2d73051db363ae57ea0f6e2c314f47326a9b7c3</citedby><cites>FETCH-LOGICAL-c380t-91d19af78320e50cde1ffc1f6d2d73051db363ae57ea0f6e2c314f47326a9b7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0013468617327627$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yoon, Young Hoon</creatorcontrib><creatorcontrib>Kim, Doo Soo</creatorcontrib><creatorcontrib>Kim, MinJung</creatorcontrib><creatorcontrib>Park, Min Sang</creatorcontrib><creatorcontrib>Lee, Young-Chul</creatorcontrib><creatorcontrib>Kim, Kwang Ho</creatorcontrib><creatorcontrib>Kim, Il Tae</creatorcontrib><creatorcontrib>Hur, Jaehyun</creatorcontrib><creatorcontrib>Lee, Seung Geol</creatorcontrib><title>Investigation of electrochemical performance on carbon supported tin-selenium bimetallic anodes in lithium-ion batteries</title><title>Electrochimica acta</title><description>Bimetallic compound, composed of two different metal elements, has emerged as an important class of electrode system. Amorphous carbon materials are widely used in anodes to reduce the internal resistance of electrodes. Therefore, SnSe bimetallic compound uniformly dispersed in acetylene black as a carbon-support has been fabricated for lithium ion batteries by high energy mechanical milling (HEMM) process under argon atmosphere. The SnSe-C composite retains a reversible capacity of 564 mAh g−1 with a coulombic efficiency of 99.8%, at a current rate of 100 mA g−1 after 50 cycles. In the high rate capability test, the SnSe-C composite exhibits the charge capacity of 530 mAh g−1 at 5000 mA g−1 charge rate. Electrochemical impedance spectroscopy (EIS) results indicate that SnSe-C composite shows small increase of surface resistance than that of plain SnSe composite. The enhanced cycle stability of SnSe-C composite can be attributed to the amorphous carbon additive that offers high electrical conductivity as well as a buffer matrix that prevents the volume change during cycling.</description><subject>Acetylene</subject><subject>Amorphous materials</subject><subject>Anode material</subject><subject>Anodes</subject><subject>Batteries</subject><subject>Bimetallic system</subject><subject>Bimetals</subject><subject>Carbon-support</subject><subject>Conductivity</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemical performance</subject><subject>Electrodes</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Mechanical milling</subject><subject>Rechargeable batteries</subject><subject>Selenium</subject><subject>Surface resistance</subject><subject>Tin</subject><subject>Tin-selenium</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEFr3DAQhUVoodttfkMFPdsZWWvJPobQJAsLuSRnIUujRIttOZJ2af59tN2Qa2BgDvPeG95HyG8GNQMmrvY1jmiyLlM3wGTNmpp13QVZsU7yindt_42sABivNqITP8jPlPYAIIWEFfm3nY-Ysn_W2YeZBkf_p8VgXnDyRo90wehCnPRskBaF0XEoKx2WJcSMlmY_V6mYZn-Y6OAnzHocvaF6DhYT9TMdfX4px-r0YNA5Y_SYfpHvTo8JLz_2mjzd_n28ua92D3fbm-tdZXgHueqZZb12suMNYAvGInPOMCdsYyWHltmBC66xlajBCWwMZxu3kbwRuh-k4Wvy55y7xPB6KFXVPhziXF6qBkQLrexbWVTyrDIxpBTRqSX6Scc3xUCdMKu9-sSsTpgVa1TBXJzXZyeWEkePUSXjscCyPha9ssF_mfEOBWqN6g</recordid><startdate>20180310</startdate><enddate>20180310</enddate><creator>Yoon, Young Hoon</creator><creator>Kim, Doo Soo</creator><creator>Kim, MinJung</creator><creator>Park, Min Sang</creator><creator>Lee, Young-Chul</creator><creator>Kim, Kwang Ho</creator><creator>Kim, Il Tae</creator><creator>Hur, Jaehyun</creator><creator>Lee, Seung Geol</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180310</creationdate><title>Investigation of electrochemical performance on carbon supported tin-selenium bimetallic anodes in lithium-ion batteries</title><author>Yoon, Young Hoon ; Kim, Doo Soo ; Kim, MinJung ; Park, Min Sang ; Lee, Young-Chul ; Kim, Kwang Ho ; Kim, Il Tae ; Hur, Jaehyun ; Lee, Seung Geol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-91d19af78320e50cde1ffc1f6d2d73051db363ae57ea0f6e2c314f47326a9b7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetylene</topic><topic>Amorphous materials</topic><topic>Anode material</topic><topic>Anodes</topic><topic>Batteries</topic><topic>Bimetallic system</topic><topic>Bimetals</topic><topic>Carbon-support</topic><topic>Conductivity</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemical performance</topic><topic>Electrodes</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Mechanical milling</topic><topic>Rechargeable batteries</topic><topic>Selenium</topic><topic>Surface resistance</topic><topic>Tin</topic><topic>Tin-selenium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoon, Young Hoon</creatorcontrib><creatorcontrib>Kim, Doo Soo</creatorcontrib><creatorcontrib>Kim, MinJung</creatorcontrib><creatorcontrib>Park, Min Sang</creatorcontrib><creatorcontrib>Lee, Young-Chul</creatorcontrib><creatorcontrib>Kim, Kwang Ho</creatorcontrib><creatorcontrib>Kim, Il Tae</creatorcontrib><creatorcontrib>Hur, Jaehyun</creatorcontrib><creatorcontrib>Lee, Seung Geol</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoon, Young Hoon</au><au>Kim, Doo Soo</au><au>Kim, MinJung</au><au>Park, Min Sang</au><au>Lee, Young-Chul</au><au>Kim, Kwang Ho</au><au>Kim, Il Tae</au><au>Hur, Jaehyun</au><au>Lee, Seung Geol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of electrochemical performance on carbon supported tin-selenium bimetallic anodes in lithium-ion batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2018-03-10</date><risdate>2018</risdate><volume>266</volume><spage>193</spage><epage>201</epage><pages>193-201</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>Bimetallic compound, composed of two different metal elements, has emerged as an important class of electrode system. Amorphous carbon materials are widely used in anodes to reduce the internal resistance of electrodes. Therefore, SnSe bimetallic compound uniformly dispersed in acetylene black as a carbon-support has been fabricated for lithium ion batteries by high energy mechanical milling (HEMM) process under argon atmosphere. The SnSe-C composite retains a reversible capacity of 564 mAh g−1 with a coulombic efficiency of 99.8%, at a current rate of 100 mA g−1 after 50 cycles. In the high rate capability test, the SnSe-C composite exhibits the charge capacity of 530 mAh g−1 at 5000 mA g−1 charge rate. Electrochemical impedance spectroscopy (EIS) results indicate that SnSe-C composite shows small increase of surface resistance than that of plain SnSe composite. The enhanced cycle stability of SnSe-C composite can be attributed to the amorphous carbon additive that offers high electrical conductivity as well as a buffer matrix that prevents the volume change during cycling.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2017.12.188</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2018-03, Vol.266, p.193-201
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2065057957
source Elsevier ScienceDirect Journals
subjects Acetylene
Amorphous materials
Anode material
Anodes
Batteries
Bimetallic system
Bimetals
Carbon-support
Conductivity
Electrical resistivity
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrochemical performance
Electrodes
Lithium
Lithium-ion batteries
Mechanical milling
Rechargeable batteries
Selenium
Surface resistance
Tin
Tin-selenium
title Investigation of electrochemical performance on carbon supported tin-selenium bimetallic anodes in lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20electrochemical%20performance%20on%20carbon%20supported%20tin-selenium%20bimetallic%20anodes%20in%20lithium-ion%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Yoon,%20Young%20Hoon&rft.date=2018-03-10&rft.volume=266&rft.spage=193&rft.epage=201&rft.pages=193-201&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2017.12.188&rft_dat=%3Cproquest_cross%3E2065057957%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065057957&rft_id=info:pmid/&rft_els_id=S0013468617327627&rfr_iscdi=true