A pyridine vapor sensor based on metal-organic framework-modified quartz crystal microbalance

•A synthesized NMOF of Al(OH)(1,4-NDC) was successfully assembled on the surface of QCM.•A new QCM sensor indicates high sensitivity and the selectivity for pyridine vapor detection.•Adsorption mechanism of pyridine in Al(OH)(1,4-NDC) was studied by van der Waals corrected density functional theory...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2018-01, Vol.254, p.872-877
Hauptverfasser: Xu, Fen, Sun, Lixian, Huang, Pengru, Sun, Yujia, Zheng, Qian, Zou, Yongjin, Chu, Hailing, Yan, Erhu, Zhang, Huanzhi, Wang, Jianhuan, Du, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 877
container_issue
container_start_page 872
container_title Sensors and actuators. B, Chemical
container_volume 254
creator Xu, Fen
Sun, Lixian
Huang, Pengru
Sun, Yujia
Zheng, Qian
Zou, Yongjin
Chu, Hailing
Yan, Erhu
Zhang, Huanzhi
Wang, Jianhuan
Du, Yong
description •A synthesized NMOF of Al(OH)(1,4-NDC) was successfully assembled on the surface of QCM.•A new QCM sensor indicates high sensitivity and the selectivity for pyridine vapor detection.•Adsorption mechanism of pyridine in Al(OH)(1,4-NDC) was studied by van der Waals corrected density functional theory calculation. A novel pyridine vapor sensor has been prepared by modifying the Quartz crystal microbalance (QCM) with nanoscale metal-organic framework (NMOF, named as Al(OH)(1,4-NDC)). The preparation conditions for the sensor were optimized. Improved sensing performance was achieved by using dichloromethane (CH2Cl2) instead of N,N-dimethylformamide (DMF) to disperse the NMOF on the QCM. In addition, the sensor’s sensitivity was greatly enhanced by increasing the load of NMOF. A good linear relationship was obtained (ln(△f)=6.403+0.434 lnC, R2=0.99876) in the range of 0.3–25ppm of pyridine. The sensor exhibited high selectivity, repeatability and long-term stability for pyridine detection. The adsorption mechanism of pyridine on sensor was studied by van der Waals corrected density functional theory calculation. The recovery ratio of the pyridine vapor sensor was 97.5–108.7%.
doi_str_mv 10.1016/j.snb.2017.07.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2065057210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400517312340</els_id><sourcerecordid>2065057210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-5d902bb1b8139fd1569ea5aeb519473e3f90b2f89c076e5336a0632a8580d7873</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoDvBU8t74km7TF07L4BQte9CghaV4lddt0k-7K-uuNrGdhYC4z780MIdcUCgpU3nZFHEzBgJYFJDB5Qma0KnnOoSxPyQxqJvIFgDgnFzF2ALDgEmbkfZmNh-CsGzDb69GHLOIQExkd0WZ-yHqc9Cb34UMPrsnaoHv88uEz7711rUua7U6H6TtrwiEmZda7JnijN3po8JKctXoT8eqP5-Tt4f519ZSvXx6fV8t13nAmplzYGpgx1FSU162lQtaohUYjaL0oOfK2BsPaqm6glCg4lxokZ7oSFdgytZyTm-PdMfjtDuOkOr8LQ3qpGEgBomQUkooeVSlgjAFbNQbX63BQFNTviqpTaUX1u6KCBCaT5-7owRR_7zCo2DhM1awL2EzKeveP-weF13qq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065057210</pqid></control><display><type>article</type><title>A pyridine vapor sensor based on metal-organic framework-modified quartz crystal microbalance</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xu, Fen ; Sun, Lixian ; Huang, Pengru ; Sun, Yujia ; Zheng, Qian ; Zou, Yongjin ; Chu, Hailing ; Yan, Erhu ; Zhang, Huanzhi ; Wang, Jianhuan ; Du, Yong</creator><creatorcontrib>Xu, Fen ; Sun, Lixian ; Huang, Pengru ; Sun, Yujia ; Zheng, Qian ; Zou, Yongjin ; Chu, Hailing ; Yan, Erhu ; Zhang, Huanzhi ; Wang, Jianhuan ; Du, Yong</creatorcontrib><description>•A synthesized NMOF of Al(OH)(1,4-NDC) was successfully assembled on the surface of QCM.•A new QCM sensor indicates high sensitivity and the selectivity for pyridine vapor detection.•Adsorption mechanism of pyridine in Al(OH)(1,4-NDC) was studied by van der Waals corrected density functional theory calculation. A novel pyridine vapor sensor has been prepared by modifying the Quartz crystal microbalance (QCM) with nanoscale metal-organic framework (NMOF, named as Al(OH)(1,4-NDC)). The preparation conditions for the sensor were optimized. Improved sensing performance was achieved by using dichloromethane (CH2Cl2) instead of N,N-dimethylformamide (DMF) to disperse the NMOF on the QCM. In addition, the sensor’s sensitivity was greatly enhanced by increasing the load of NMOF. A good linear relationship was obtained (ln(△f)=6.403+0.434 lnC, R2=0.99876) in the range of 0.3–25ppm of pyridine. The sensor exhibited high selectivity, repeatability and long-term stability for pyridine detection. The adsorption mechanism of pyridine on sensor was studied by van der Waals corrected density functional theory calculation. The recovery ratio of the pyridine vapor sensor was 97.5–108.7%.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2017.07.026</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aluminum ; Chemical compounds ; Density functional theory ; Dichloromethane ; Metal-organic framework (MOF) ; Metal-organic frameworks ; Microbalances ; Pyridine vapor ; Quartz ; Quartz crystal microbalance (QCM) ; Sensitivity analysis ; Sensitivity enhancement ; Sensor ; Sensors ; Studies ; Vapors</subject><ispartof>Sensors and actuators. B, Chemical, 2018-01, Vol.254, p.872-877</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-5d902bb1b8139fd1569ea5aeb519473e3f90b2f89c076e5336a0632a8580d7873</citedby><cites>FETCH-LOGICAL-c325t-5d902bb1b8139fd1569ea5aeb519473e3f90b2f89c076e5336a0632a8580d7873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2017.07.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Xu, Fen</creatorcontrib><creatorcontrib>Sun, Lixian</creatorcontrib><creatorcontrib>Huang, Pengru</creatorcontrib><creatorcontrib>Sun, Yujia</creatorcontrib><creatorcontrib>Zheng, Qian</creatorcontrib><creatorcontrib>Zou, Yongjin</creatorcontrib><creatorcontrib>Chu, Hailing</creatorcontrib><creatorcontrib>Yan, Erhu</creatorcontrib><creatorcontrib>Zhang, Huanzhi</creatorcontrib><creatorcontrib>Wang, Jianhuan</creatorcontrib><creatorcontrib>Du, Yong</creatorcontrib><title>A pyridine vapor sensor based on metal-organic framework-modified quartz crystal microbalance</title><title>Sensors and actuators. B, Chemical</title><description>•A synthesized NMOF of Al(OH)(1,4-NDC) was successfully assembled on the surface of QCM.•A new QCM sensor indicates high sensitivity and the selectivity for pyridine vapor detection.•Adsorption mechanism of pyridine in Al(OH)(1,4-NDC) was studied by van der Waals corrected density functional theory calculation. A novel pyridine vapor sensor has been prepared by modifying the Quartz crystal microbalance (QCM) with nanoscale metal-organic framework (NMOF, named as Al(OH)(1,4-NDC)). The preparation conditions for the sensor were optimized. Improved sensing performance was achieved by using dichloromethane (CH2Cl2) instead of N,N-dimethylformamide (DMF) to disperse the NMOF on the QCM. In addition, the sensor’s sensitivity was greatly enhanced by increasing the load of NMOF. A good linear relationship was obtained (ln(△f)=6.403+0.434 lnC, R2=0.99876) in the range of 0.3–25ppm of pyridine. The sensor exhibited high selectivity, repeatability and long-term stability for pyridine detection. The adsorption mechanism of pyridine on sensor was studied by van der Waals corrected density functional theory calculation. The recovery ratio of the pyridine vapor sensor was 97.5–108.7%.</description><subject>Aluminum</subject><subject>Chemical compounds</subject><subject>Density functional theory</subject><subject>Dichloromethane</subject><subject>Metal-organic framework (MOF)</subject><subject>Metal-organic frameworks</subject><subject>Microbalances</subject><subject>Pyridine vapor</subject><subject>Quartz</subject><subject>Quartz crystal microbalance (QCM)</subject><subject>Sensitivity analysis</subject><subject>Sensitivity enhancement</subject><subject>Sensor</subject><subject>Sensors</subject><subject>Studies</subject><subject>Vapors</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoDvBU8t74km7TF07L4BQte9CghaV4lddt0k-7K-uuNrGdhYC4z780MIdcUCgpU3nZFHEzBgJYFJDB5Qma0KnnOoSxPyQxqJvIFgDgnFzF2ALDgEmbkfZmNh-CsGzDb69GHLOIQExkd0WZ-yHqc9Cb34UMPrsnaoHv88uEz7711rUua7U6H6TtrwiEmZda7JnijN3po8JKctXoT8eqP5-Tt4f519ZSvXx6fV8t13nAmplzYGpgx1FSU162lQtaohUYjaL0oOfK2BsPaqm6glCg4lxokZ7oSFdgytZyTm-PdMfjtDuOkOr8LQ3qpGEgBomQUkooeVSlgjAFbNQbX63BQFNTviqpTaUX1u6KCBCaT5-7owRR_7zCo2DhM1awL2EzKeveP-weF13qq</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Xu, Fen</creator><creator>Sun, Lixian</creator><creator>Huang, Pengru</creator><creator>Sun, Yujia</creator><creator>Zheng, Qian</creator><creator>Zou, Yongjin</creator><creator>Chu, Hailing</creator><creator>Yan, Erhu</creator><creator>Zhang, Huanzhi</creator><creator>Wang, Jianhuan</creator><creator>Du, Yong</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201801</creationdate><title>A pyridine vapor sensor based on metal-organic framework-modified quartz crystal microbalance</title><author>Xu, Fen ; Sun, Lixian ; Huang, Pengru ; Sun, Yujia ; Zheng, Qian ; Zou, Yongjin ; Chu, Hailing ; Yan, Erhu ; Zhang, Huanzhi ; Wang, Jianhuan ; Du, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-5d902bb1b8139fd1569ea5aeb519473e3f90b2f89c076e5336a0632a8580d7873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aluminum</topic><topic>Chemical compounds</topic><topic>Density functional theory</topic><topic>Dichloromethane</topic><topic>Metal-organic framework (MOF)</topic><topic>Metal-organic frameworks</topic><topic>Microbalances</topic><topic>Pyridine vapor</topic><topic>Quartz</topic><topic>Quartz crystal microbalance (QCM)</topic><topic>Sensitivity analysis</topic><topic>Sensitivity enhancement</topic><topic>Sensor</topic><topic>Sensors</topic><topic>Studies</topic><topic>Vapors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Fen</creatorcontrib><creatorcontrib>Sun, Lixian</creatorcontrib><creatorcontrib>Huang, Pengru</creatorcontrib><creatorcontrib>Sun, Yujia</creatorcontrib><creatorcontrib>Zheng, Qian</creatorcontrib><creatorcontrib>Zou, Yongjin</creatorcontrib><creatorcontrib>Chu, Hailing</creatorcontrib><creatorcontrib>Yan, Erhu</creatorcontrib><creatorcontrib>Zhang, Huanzhi</creatorcontrib><creatorcontrib>Wang, Jianhuan</creatorcontrib><creatorcontrib>Du, Yong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Fen</au><au>Sun, Lixian</au><au>Huang, Pengru</au><au>Sun, Yujia</au><au>Zheng, Qian</au><au>Zou, Yongjin</au><au>Chu, Hailing</au><au>Yan, Erhu</au><au>Zhang, Huanzhi</au><au>Wang, Jianhuan</au><au>Du, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A pyridine vapor sensor based on metal-organic framework-modified quartz crystal microbalance</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2018-01</date><risdate>2018</risdate><volume>254</volume><spage>872</spage><epage>877</epage><pages>872-877</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>•A synthesized NMOF of Al(OH)(1,4-NDC) was successfully assembled on the surface of QCM.•A new QCM sensor indicates high sensitivity and the selectivity for pyridine vapor detection.•Adsorption mechanism of pyridine in Al(OH)(1,4-NDC) was studied by van der Waals corrected density functional theory calculation. A novel pyridine vapor sensor has been prepared by modifying the Quartz crystal microbalance (QCM) with nanoscale metal-organic framework (NMOF, named as Al(OH)(1,4-NDC)). The preparation conditions for the sensor were optimized. Improved sensing performance was achieved by using dichloromethane (CH2Cl2) instead of N,N-dimethylformamide (DMF) to disperse the NMOF on the QCM. In addition, the sensor’s sensitivity was greatly enhanced by increasing the load of NMOF. A good linear relationship was obtained (ln(△f)=6.403+0.434 lnC, R2=0.99876) in the range of 0.3–25ppm of pyridine. The sensor exhibited high selectivity, repeatability and long-term stability for pyridine detection. The adsorption mechanism of pyridine on sensor was studied by van der Waals corrected density functional theory calculation. The recovery ratio of the pyridine vapor sensor was 97.5–108.7%.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2017.07.026</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2018-01, Vol.254, p.872-877
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_journals_2065057210
source ScienceDirect Journals (5 years ago - present)
subjects Aluminum
Chemical compounds
Density functional theory
Dichloromethane
Metal-organic framework (MOF)
Metal-organic frameworks
Microbalances
Pyridine vapor
Quartz
Quartz crystal microbalance (QCM)
Sensitivity analysis
Sensitivity enhancement
Sensor
Sensors
Studies
Vapors
title A pyridine vapor sensor based on metal-organic framework-modified quartz crystal microbalance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20pyridine%20vapor%20sensor%20based%20on%20metal-organic%20framework-modified%20quartz%20crystal%20microbalance&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Xu,%20Fen&rft.date=2018-01&rft.volume=254&rft.spage=872&rft.epage=877&rft.pages=872-877&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2017.07.026&rft_dat=%3Cproquest_cross%3E2065057210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065057210&rft_id=info:pmid/&rft_els_id=S0925400517312340&rfr_iscdi=true