Predictive modeling for US commercial building energy use: A comparison of existing statistical and machine learning algorithms using CBECS microdata

With the growing trove of publicly available building energy data, there are now ample opportunities to apply machine learning methods for prediction of building energy performance. In this study, we test different predictive modeling approaches for estimating Energy Use Intensity (EUI) for US comme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy and buildings 2018-03, Vol.163, p.34-43
Hauptverfasser: Deng, Hengfang, Fannon, David, Eckelman, Matthew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue
container_start_page 34
container_title Energy and buildings
container_volume 163
creator Deng, Hengfang
Fannon, David
Eckelman, Matthew J.
description With the growing trove of publicly available building energy data, there are now ample opportunities to apply machine learning methods for prediction of building energy performance. In this study, we test different predictive modeling approaches for estimating Energy Use Intensity (EUI) for US commercial office buildings and the individual energy end-uses of HVAC, plug loads, and lighting, based on the latest Commercial Building Energy Consumption Survey (CBECS) 2012 microdata. After preliminary statistical analysis, six regression or machine learning techniques are applied and compared for prediction performance. Among all candidates, Support Vector Machine and Random Forest demonstrate both accuracy and stability. However, machine learning algorithms are better than the linear regression only to a limited extent, with on average 10–15% lower prediction errors for Total EUI prediction. Conversely, linear regression models slightly outperform machine learning methods in estimating Plug Loads EUI. These mixed results suggest careful consideration in applying advanced predictive algorithms to the CBECS dataset. Individual variable importance was tested using Random Forest, with the top 10 predictors differing for the total and sub-system EUIs. The analysis demonstrates that, for the techniques applied, the variables reported in CBECS have inadequate predictive power to map actual energy consumption. Filling information gaps in areas such as occupant behavior, power management, building thermal performance, and their interactions may help to improve predictive modeling.
doi_str_mv 10.1016/j.enbuild.2017.12.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2065054998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778817327834</els_id><sourcerecordid>2065054998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-53f1d75fd6fb41678c24964efbe9806c140f91403f5132cf957c9de4040660fd3</originalsourceid><addsrcrecordid>eNqFkcFu3CAURVHVSJ1O8gmVkLq2A7YBu5sqHaVJpUitlGSNGHhMsGyYAjNqPiT_G5zJvhtAcO7lvXcR-kJJTQnll2MNfntwk6kbQkVNm5q09ANa0V40Faei_4hWpBV9JUTff0KfUxoJIZwJukIvfyIYp7M7Ap6Dgcn5HbYh4sd7rMM8Q9ROTfjNfnkCD3H3jA8JvuGrhdir6FLwOFgM_1zKC5SyystRF6XyBs9KPzkPeAIV_QKoaReiy09zKk7LxebH9eYez07HYFRW5-jMqinBxfu-Ro8_rx82t9Xd75tfm6u7SneM5Yq1lhrBrOF221Euet10A-_AbmHoCde0I3YoS2sZbRttByb0YKAjHeGcWNOu0deT7z6GvwdIWY7hEH35UjZlQIR1w9AXip2oUl1KEazcRzer-CwpkUsCcpTvCcglAUkbWRIouu8nHZQWjg6iTNqB12XgEXSWJrj_OLwCdhiUDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065054998</pqid></control><display><type>article</type><title>Predictive modeling for US commercial building energy use: A comparison of existing statistical and machine learning algorithms using CBECS microdata</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Deng, Hengfang ; Fannon, David ; Eckelman, Matthew J.</creator><creatorcontrib>Deng, Hengfang ; Fannon, David ; Eckelman, Matthew J.</creatorcontrib><description>With the growing trove of publicly available building energy data, there are now ample opportunities to apply machine learning methods for prediction of building energy performance. In this study, we test different predictive modeling approaches for estimating Energy Use Intensity (EUI) for US commercial office buildings and the individual energy end-uses of HVAC, plug loads, and lighting, based on the latest Commercial Building Energy Consumption Survey (CBECS) 2012 microdata. After preliminary statistical analysis, six regression or machine learning techniques are applied and compared for prediction performance. Among all candidates, Support Vector Machine and Random Forest demonstrate both accuracy and stability. However, machine learning algorithms are better than the linear regression only to a limited extent, with on average 10–15% lower prediction errors for Total EUI prediction. Conversely, linear regression models slightly outperform machine learning methods in estimating Plug Loads EUI. These mixed results suggest careful consideration in applying advanced predictive algorithms to the CBECS dataset. Individual variable importance was tested using Random Forest, with the top 10 predictors differing for the total and sub-system EUIs. The analysis demonstrates that, for the techniques applied, the variables reported in CBECS have inadequate predictive power to map actual energy consumption. Filling information gaps in areas such as occupant behavior, power management, building thermal performance, and their interactions may help to improve predictive modeling.</description><identifier>ISSN: 0378-7788</identifier><identifier>EISSN: 1872-6178</identifier><identifier>DOI: 10.1016/j.enbuild.2017.12.031</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural network ; Building energy data ; Building energy modeling ; Commercial buildings ; Commercial real estate ; Construction methods ; Energy consumption ; Energy use intensity ; Estimation ; Learning algorithms ; Machine learning ; Modelling ; Office buildings ; Power consumption ; Power management ; Prediction models ; Random forest ; Regression analysis ; Regression models ; Statistical analysis ; Statistical prediction ; Statistics ; Studies ; Support vector machines</subject><ispartof>Energy and buildings, 2018-03, Vol.163, p.34-43</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-53f1d75fd6fb41678c24964efbe9806c140f91403f5132cf957c9de4040660fd3</citedby><cites>FETCH-LOGICAL-c455t-53f1d75fd6fb41678c24964efbe9806c140f91403f5132cf957c9de4040660fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enbuild.2017.12.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Deng, Hengfang</creatorcontrib><creatorcontrib>Fannon, David</creatorcontrib><creatorcontrib>Eckelman, Matthew J.</creatorcontrib><title>Predictive modeling for US commercial building energy use: A comparison of existing statistical and machine learning algorithms using CBECS microdata</title><title>Energy and buildings</title><description>With the growing trove of publicly available building energy data, there are now ample opportunities to apply machine learning methods for prediction of building energy performance. In this study, we test different predictive modeling approaches for estimating Energy Use Intensity (EUI) for US commercial office buildings and the individual energy end-uses of HVAC, plug loads, and lighting, based on the latest Commercial Building Energy Consumption Survey (CBECS) 2012 microdata. After preliminary statistical analysis, six regression or machine learning techniques are applied and compared for prediction performance. Among all candidates, Support Vector Machine and Random Forest demonstrate both accuracy and stability. However, machine learning algorithms are better than the linear regression only to a limited extent, with on average 10–15% lower prediction errors for Total EUI prediction. Conversely, linear regression models slightly outperform machine learning methods in estimating Plug Loads EUI. These mixed results suggest careful consideration in applying advanced predictive algorithms to the CBECS dataset. Individual variable importance was tested using Random Forest, with the top 10 predictors differing for the total and sub-system EUIs. The analysis demonstrates that, for the techniques applied, the variables reported in CBECS have inadequate predictive power to map actual energy consumption. Filling information gaps in areas such as occupant behavior, power management, building thermal performance, and their interactions may help to improve predictive modeling.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural network</subject><subject>Building energy data</subject><subject>Building energy modeling</subject><subject>Commercial buildings</subject><subject>Commercial real estate</subject><subject>Construction methods</subject><subject>Energy consumption</subject><subject>Energy use intensity</subject><subject>Estimation</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Office buildings</subject><subject>Power consumption</subject><subject>Power management</subject><subject>Prediction models</subject><subject>Random forest</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Statistical prediction</subject><subject>Statistics</subject><subject>Studies</subject><subject>Support vector machines</subject><issn>0378-7788</issn><issn>1872-6178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu3CAURVHVSJ1O8gmVkLq2A7YBu5sqHaVJpUitlGSNGHhMsGyYAjNqPiT_G5zJvhtAcO7lvXcR-kJJTQnll2MNfntwk6kbQkVNm5q09ANa0V40Faei_4hWpBV9JUTff0KfUxoJIZwJukIvfyIYp7M7Ap6Dgcn5HbYh4sd7rMM8Q9ROTfjNfnkCD3H3jA8JvuGrhdir6FLwOFgM_1zKC5SyystRF6XyBs9KPzkPeAIV_QKoaReiy09zKk7LxebH9eYez07HYFRW5-jMqinBxfu-Ro8_rx82t9Xd75tfm6u7SneM5Yq1lhrBrOF221Euet10A-_AbmHoCde0I3YoS2sZbRttByb0YKAjHeGcWNOu0deT7z6GvwdIWY7hEH35UjZlQIR1w9AXip2oUl1KEazcRzer-CwpkUsCcpTvCcglAUkbWRIouu8nHZQWjg6iTNqB12XgEXSWJrj_OLwCdhiUDQ</recordid><startdate>20180315</startdate><enddate>20180315</enddate><creator>Deng, Hengfang</creator><creator>Fannon, David</creator><creator>Eckelman, Matthew J.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20180315</creationdate><title>Predictive modeling for US commercial building energy use: A comparison of existing statistical and machine learning algorithms using CBECS microdata</title><author>Deng, Hengfang ; Fannon, David ; Eckelman, Matthew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-53f1d75fd6fb41678c24964efbe9806c140f91403f5132cf957c9de4040660fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural network</topic><topic>Building energy data</topic><topic>Building energy modeling</topic><topic>Commercial buildings</topic><topic>Commercial real estate</topic><topic>Construction methods</topic><topic>Energy consumption</topic><topic>Energy use intensity</topic><topic>Estimation</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Office buildings</topic><topic>Power consumption</topic><topic>Power management</topic><topic>Prediction models</topic><topic>Random forest</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Statistical prediction</topic><topic>Statistics</topic><topic>Studies</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Hengfang</creatorcontrib><creatorcontrib>Fannon, David</creatorcontrib><creatorcontrib>Eckelman, Matthew J.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Hengfang</au><au>Fannon, David</au><au>Eckelman, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive modeling for US commercial building energy use: A comparison of existing statistical and machine learning algorithms using CBECS microdata</atitle><jtitle>Energy and buildings</jtitle><date>2018-03-15</date><risdate>2018</risdate><volume>163</volume><spage>34</spage><epage>43</epage><pages>34-43</pages><issn>0378-7788</issn><eissn>1872-6178</eissn><abstract>With the growing trove of publicly available building energy data, there are now ample opportunities to apply machine learning methods for prediction of building energy performance. In this study, we test different predictive modeling approaches for estimating Energy Use Intensity (EUI) for US commercial office buildings and the individual energy end-uses of HVAC, plug loads, and lighting, based on the latest Commercial Building Energy Consumption Survey (CBECS) 2012 microdata. After preliminary statistical analysis, six regression or machine learning techniques are applied and compared for prediction performance. Among all candidates, Support Vector Machine and Random Forest demonstrate both accuracy and stability. However, machine learning algorithms are better than the linear regression only to a limited extent, with on average 10–15% lower prediction errors for Total EUI prediction. Conversely, linear regression models slightly outperform machine learning methods in estimating Plug Loads EUI. These mixed results suggest careful consideration in applying advanced predictive algorithms to the CBECS dataset. Individual variable importance was tested using Random Forest, with the top 10 predictors differing for the total and sub-system EUIs. The analysis demonstrates that, for the techniques applied, the variables reported in CBECS have inadequate predictive power to map actual energy consumption. Filling information gaps in areas such as occupant behavior, power management, building thermal performance, and their interactions may help to improve predictive modeling.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2017.12.031</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7788
ispartof Energy and buildings, 2018-03, Vol.163, p.34-43
issn 0378-7788
1872-6178
language eng
recordid cdi_proquest_journals_2065054998
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Artificial intelligence
Artificial neural network
Building energy data
Building energy modeling
Commercial buildings
Commercial real estate
Construction methods
Energy consumption
Energy use intensity
Estimation
Learning algorithms
Machine learning
Modelling
Office buildings
Power consumption
Power management
Prediction models
Random forest
Regression analysis
Regression models
Statistical analysis
Statistical prediction
Statistics
Studies
Support vector machines
title Predictive modeling for US commercial building energy use: A comparison of existing statistical and machine learning algorithms using CBECS microdata
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20modeling%20for%20US%20commercial%20building%20energy%20use:%20A%20comparison%20of%20existing%20statistical%20and%20machine%20learning%20algorithms%20using%20CBECS%20microdata&rft.jtitle=Energy%20and%20buildings&rft.au=Deng,%20Hengfang&rft.date=2018-03-15&rft.volume=163&rft.spage=34&rft.epage=43&rft.pages=34-43&rft.issn=0378-7788&rft.eissn=1872-6178&rft_id=info:doi/10.1016/j.enbuild.2017.12.031&rft_dat=%3Cproquest_cross%3E2065054998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2065054998&rft_id=info:pmid/&rft_els_id=S0378778817327834&rfr_iscdi=true