Inferring solutions of differential equations using noisy multi-fidelity data
For more than two centuries, solutions of differential equations have been obtained either analytically or numerically based on typically well-behaved forcing and boundary conditions for well-posed problems. We are changing this paradigm in a fundamental way by establishing an interface between prob...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2017-04, Vol.335, p.736-746 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 746 |
---|---|
container_issue | |
container_start_page | 736 |
container_title | Journal of computational physics |
container_volume | 335 |
creator | Raissi, Maziar Perdikaris, Paris Karniadakis, George Em |
description | For more than two centuries, solutions of differential equations have been obtained either analytically or numerically based on typically well-behaved forcing and boundary conditions for well-posed problems. We are changing this paradigm in a fundamental way by establishing an interface between probabilistic machine learning and differential equations. We develop data-driven algorithms for general linear equations using Gaussian process priors tailored to the corresponding integro-differential operators. The only observables are scarce noisy multi-fidelity data for the forcing and solution that are not required to reside on the domain boundary. The resulting predictive posterior distributions quantify uncertainty and naturally lead to adaptive solution refinement via active learning. This general framework circumvents the tyranny of numerical discretization as well as the consistency and stability issues of time-integration, and is scalable to high-dimensions. |
doi_str_mv | 10.1016/j.jcp.2017.01.060 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2064417823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999117300761</els_id><sourcerecordid>2064417823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-e16ddfca61b050f4764aca352bee1aaeaa83b5c5c62892cd9e3ad645c75bf2e3</originalsourceid><addsrcrecordid>eNp9kE1rwzAMhs3YYN3HD9gtsHMy2XGchJ1G2UehY5fejWPLwyGNW9sZ9N8vJTvvJJDeRxIPIQ8UCgpUPPVFrw8FA1oXQAsQcEFWFFrIWU3FJVkBMJq3bUuvyU2MPQA0FW9W5HMzWgzBjd9Z9MOUnB9j5m1mnJ37OCanhgyPk1omUzwnR-_iKdtPQ3K5dQYHl06ZUUndkSurhoj3f_WW7N5ed-uPfPv1vlm_bHPNS55ypMIYq5WgHVRgeS240qqsWIdIlUKlmrKrdKUFa1qmTYulMoJXuq46y7C8JY_L2kPwxwljkr2fwjhflAwE57RuWDmn6JLSwccY0MpDcHsVTpKCPEuTvZylybM0CVTO0mbmeWFw_v7HYZBROxw1GhdQJ2m8-4f-BSHidqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064417823</pqid></control><display><type>article</type><title>Inferring solutions of differential equations using noisy multi-fidelity data</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Raissi, Maziar ; Perdikaris, Paris ; Karniadakis, George Em</creator><creatorcontrib>Raissi, Maziar ; Perdikaris, Paris ; Karniadakis, George Em</creatorcontrib><description>For more than two centuries, solutions of differential equations have been obtained either analytically or numerically based on typically well-behaved forcing and boundary conditions for well-posed problems. We are changing this paradigm in a fundamental way by establishing an interface between probabilistic machine learning and differential equations. We develop data-driven algorithms for general linear equations using Gaussian process priors tailored to the corresponding integro-differential operators. The only observables are scarce noisy multi-fidelity data for the forcing and solution that are not required to reside on the domain boundary. The resulting predictive posterior distributions quantify uncertainty and naturally lead to adaptive solution refinement via active learning. This general framework circumvents the tyranny of numerical discretization as well as the consistency and stability issues of time-integration, and is scalable to high-dimensions.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2017.01.060</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Artificial intelligence ; Computational physics ; Differential equations ; Gaussian process ; Integration ; Integro-differential equations ; Linear equations ; Machine learning ; Multi-fidelity modeling ; Studies ; Uncertainty ; Uncertainty quantification ; Well posed problems</subject><ispartof>Journal of computational physics, 2017-04, Vol.335, p.736-746</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Apr 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-e16ddfca61b050f4764aca352bee1aaeaa83b5c5c62892cd9e3ad645c75bf2e3</citedby><cites>FETCH-LOGICAL-c434t-e16ddfca61b050f4764aca352bee1aaeaa83b5c5c62892cd9e3ad645c75bf2e3</cites><orcidid>0000-0001-8042-8354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2017.01.060$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Raissi, Maziar</creatorcontrib><creatorcontrib>Perdikaris, Paris</creatorcontrib><creatorcontrib>Karniadakis, George Em</creatorcontrib><title>Inferring solutions of differential equations using noisy multi-fidelity data</title><title>Journal of computational physics</title><description>For more than two centuries, solutions of differential equations have been obtained either analytically or numerically based on typically well-behaved forcing and boundary conditions for well-posed problems. We are changing this paradigm in a fundamental way by establishing an interface between probabilistic machine learning and differential equations. We develop data-driven algorithms for general linear equations using Gaussian process priors tailored to the corresponding integro-differential operators. The only observables are scarce noisy multi-fidelity data for the forcing and solution that are not required to reside on the domain boundary. The resulting predictive posterior distributions quantify uncertainty and naturally lead to adaptive solution refinement via active learning. This general framework circumvents the tyranny of numerical discretization as well as the consistency and stability issues of time-integration, and is scalable to high-dimensions.</description><subject>Artificial intelligence</subject><subject>Computational physics</subject><subject>Differential equations</subject><subject>Gaussian process</subject><subject>Integration</subject><subject>Integro-differential equations</subject><subject>Linear equations</subject><subject>Machine learning</subject><subject>Multi-fidelity modeling</subject><subject>Studies</subject><subject>Uncertainty</subject><subject>Uncertainty quantification</subject><subject>Well posed problems</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rwzAMhs3YYN3HD9gtsHMy2XGchJ1G2UehY5fejWPLwyGNW9sZ9N8vJTvvJJDeRxIPIQ8UCgpUPPVFrw8FA1oXQAsQcEFWFFrIWU3FJVkBMJq3bUuvyU2MPQA0FW9W5HMzWgzBjd9Z9MOUnB9j5m1mnJ37OCanhgyPk1omUzwnR-_iKdtPQ3K5dQYHl06ZUUndkSurhoj3f_WW7N5ed-uPfPv1vlm_bHPNS55ypMIYq5WgHVRgeS240qqsWIdIlUKlmrKrdKUFa1qmTYulMoJXuq46y7C8JY_L2kPwxwljkr2fwjhflAwE57RuWDmn6JLSwccY0MpDcHsVTpKCPEuTvZylybM0CVTO0mbmeWFw_v7HYZBROxw1GhdQJ2m8-4f-BSHidqQ</recordid><startdate>20170415</startdate><enddate>20170415</enddate><creator>Raissi, Maziar</creator><creator>Perdikaris, Paris</creator><creator>Karniadakis, George Em</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8042-8354</orcidid></search><sort><creationdate>20170415</creationdate><title>Inferring solutions of differential equations using noisy multi-fidelity data</title><author>Raissi, Maziar ; Perdikaris, Paris ; Karniadakis, George Em</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-e16ddfca61b050f4764aca352bee1aaeaa83b5c5c62892cd9e3ad645c75bf2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Computational physics</topic><topic>Differential equations</topic><topic>Gaussian process</topic><topic>Integration</topic><topic>Integro-differential equations</topic><topic>Linear equations</topic><topic>Machine learning</topic><topic>Multi-fidelity modeling</topic><topic>Studies</topic><topic>Uncertainty</topic><topic>Uncertainty quantification</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raissi, Maziar</creatorcontrib><creatorcontrib>Perdikaris, Paris</creatorcontrib><creatorcontrib>Karniadakis, George Em</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raissi, Maziar</au><au>Perdikaris, Paris</au><au>Karniadakis, George Em</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring solutions of differential equations using noisy multi-fidelity data</atitle><jtitle>Journal of computational physics</jtitle><date>2017-04-15</date><risdate>2017</risdate><volume>335</volume><spage>736</spage><epage>746</epage><pages>736-746</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>For more than two centuries, solutions of differential equations have been obtained either analytically or numerically based on typically well-behaved forcing and boundary conditions for well-posed problems. We are changing this paradigm in a fundamental way by establishing an interface between probabilistic machine learning and differential equations. We develop data-driven algorithms for general linear equations using Gaussian process priors tailored to the corresponding integro-differential operators. The only observables are scarce noisy multi-fidelity data for the forcing and solution that are not required to reside on the domain boundary. The resulting predictive posterior distributions quantify uncertainty and naturally lead to adaptive solution refinement via active learning. This general framework circumvents the tyranny of numerical discretization as well as the consistency and stability issues of time-integration, and is scalable to high-dimensions.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2017.01.060</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8042-8354</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2017-04, Vol.335, p.736-746 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_journals_2064417823 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Artificial intelligence Computational physics Differential equations Gaussian process Integration Integro-differential equations Linear equations Machine learning Multi-fidelity modeling Studies Uncertainty Uncertainty quantification Well posed problems |
title | Inferring solutions of differential equations using noisy multi-fidelity data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A41%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20solutions%20of%20differential%20equations%20using%20noisy%20multi-fidelity%20data&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Raissi,%20Maziar&rft.date=2017-04-15&rft.volume=335&rft.spage=736&rft.epage=746&rft.pages=736-746&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2017.01.060&rft_dat=%3Cproquest_cross%3E2064417823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064417823&rft_id=info:pmid/&rft_els_id=S0021999117300761&rfr_iscdi=true |