Inferring solutions of differential equations using noisy multi-fidelity data

For more than two centuries, solutions of differential equations have been obtained either analytically or numerically based on typically well-behaved forcing and boundary conditions for well-posed problems. We are changing this paradigm in a fundamental way by establishing an interface between prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2017-04, Vol.335, p.736-746
Hauptverfasser: Raissi, Maziar, Perdikaris, Paris, Karniadakis, George Em
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 746
container_issue
container_start_page 736
container_title Journal of computational physics
container_volume 335
creator Raissi, Maziar
Perdikaris, Paris
Karniadakis, George Em
description For more than two centuries, solutions of differential equations have been obtained either analytically or numerically based on typically well-behaved forcing and boundary conditions for well-posed problems. We are changing this paradigm in a fundamental way by establishing an interface between probabilistic machine learning and differential equations. We develop data-driven algorithms for general linear equations using Gaussian process priors tailored to the corresponding integro-differential operators. The only observables are scarce noisy multi-fidelity data for the forcing and solution that are not required to reside on the domain boundary. The resulting predictive posterior distributions quantify uncertainty and naturally lead to adaptive solution refinement via active learning. This general framework circumvents the tyranny of numerical discretization as well as the consistency and stability issues of time-integration, and is scalable to high-dimensions.
doi_str_mv 10.1016/j.jcp.2017.01.060
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2064417823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999117300761</els_id><sourcerecordid>2064417823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-e16ddfca61b050f4764aca352bee1aaeaa83b5c5c62892cd9e3ad645c75bf2e3</originalsourceid><addsrcrecordid>eNp9kE1rwzAMhs3YYN3HD9gtsHMy2XGchJ1G2UehY5fejWPLwyGNW9sZ9N8vJTvvJJDeRxIPIQ8UCgpUPPVFrw8FA1oXQAsQcEFWFFrIWU3FJVkBMJq3bUuvyU2MPQA0FW9W5HMzWgzBjd9Z9MOUnB9j5m1mnJ37OCanhgyPk1omUzwnR-_iKdtPQ3K5dQYHl06ZUUndkSurhoj3f_WW7N5ed-uPfPv1vlm_bHPNS55ypMIYq5WgHVRgeS240qqsWIdIlUKlmrKrdKUFa1qmTYulMoJXuq46y7C8JY_L2kPwxwljkr2fwjhflAwE57RuWDmn6JLSwccY0MpDcHsVTpKCPEuTvZylybM0CVTO0mbmeWFw_v7HYZBROxw1GhdQJ2m8-4f-BSHidqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2064417823</pqid></control><display><type>article</type><title>Inferring solutions of differential equations using noisy multi-fidelity data</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Raissi, Maziar ; Perdikaris, Paris ; Karniadakis, George Em</creator><creatorcontrib>Raissi, Maziar ; Perdikaris, Paris ; Karniadakis, George Em</creatorcontrib><description>For more than two centuries, solutions of differential equations have been obtained either analytically or numerically based on typically well-behaved forcing and boundary conditions for well-posed problems. We are changing this paradigm in a fundamental way by establishing an interface between probabilistic machine learning and differential equations. We develop data-driven algorithms for general linear equations using Gaussian process priors tailored to the corresponding integro-differential operators. The only observables are scarce noisy multi-fidelity data for the forcing and solution that are not required to reside on the domain boundary. The resulting predictive posterior distributions quantify uncertainty and naturally lead to adaptive solution refinement via active learning. This general framework circumvents the tyranny of numerical discretization as well as the consistency and stability issues of time-integration, and is scalable to high-dimensions.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2017.01.060</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Artificial intelligence ; Computational physics ; Differential equations ; Gaussian process ; Integration ; Integro-differential equations ; Linear equations ; Machine learning ; Multi-fidelity modeling ; Studies ; Uncertainty ; Uncertainty quantification ; Well posed problems</subject><ispartof>Journal of computational physics, 2017-04, Vol.335, p.736-746</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Apr 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-e16ddfca61b050f4764aca352bee1aaeaa83b5c5c62892cd9e3ad645c75bf2e3</citedby><cites>FETCH-LOGICAL-c434t-e16ddfca61b050f4764aca352bee1aaeaa83b5c5c62892cd9e3ad645c75bf2e3</cites><orcidid>0000-0001-8042-8354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2017.01.060$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Raissi, Maziar</creatorcontrib><creatorcontrib>Perdikaris, Paris</creatorcontrib><creatorcontrib>Karniadakis, George Em</creatorcontrib><title>Inferring solutions of differential equations using noisy multi-fidelity data</title><title>Journal of computational physics</title><description>For more than two centuries, solutions of differential equations have been obtained either analytically or numerically based on typically well-behaved forcing and boundary conditions for well-posed problems. We are changing this paradigm in a fundamental way by establishing an interface between probabilistic machine learning and differential equations. We develop data-driven algorithms for general linear equations using Gaussian process priors tailored to the corresponding integro-differential operators. The only observables are scarce noisy multi-fidelity data for the forcing and solution that are not required to reside on the domain boundary. The resulting predictive posterior distributions quantify uncertainty and naturally lead to adaptive solution refinement via active learning. This general framework circumvents the tyranny of numerical discretization as well as the consistency and stability issues of time-integration, and is scalable to high-dimensions.</description><subject>Artificial intelligence</subject><subject>Computational physics</subject><subject>Differential equations</subject><subject>Gaussian process</subject><subject>Integration</subject><subject>Integro-differential equations</subject><subject>Linear equations</subject><subject>Machine learning</subject><subject>Multi-fidelity modeling</subject><subject>Studies</subject><subject>Uncertainty</subject><subject>Uncertainty quantification</subject><subject>Well posed problems</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rwzAMhs3YYN3HD9gtsHMy2XGchJ1G2UehY5fejWPLwyGNW9sZ9N8vJTvvJJDeRxIPIQ8UCgpUPPVFrw8FA1oXQAsQcEFWFFrIWU3FJVkBMJq3bUuvyU2MPQA0FW9W5HMzWgzBjd9Z9MOUnB9j5m1mnJ37OCanhgyPk1omUzwnR-_iKdtPQ3K5dQYHl06ZUUndkSurhoj3f_WW7N5ed-uPfPv1vlm_bHPNS55ypMIYq5WgHVRgeS240qqsWIdIlUKlmrKrdKUFa1qmTYulMoJXuq46y7C8JY_L2kPwxwljkr2fwjhflAwE57RuWDmn6JLSwccY0MpDcHsVTpKCPEuTvZylybM0CVTO0mbmeWFw_v7HYZBROxw1GhdQJ2m8-4f-BSHidqQ</recordid><startdate>20170415</startdate><enddate>20170415</enddate><creator>Raissi, Maziar</creator><creator>Perdikaris, Paris</creator><creator>Karniadakis, George Em</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8042-8354</orcidid></search><sort><creationdate>20170415</creationdate><title>Inferring solutions of differential equations using noisy multi-fidelity data</title><author>Raissi, Maziar ; Perdikaris, Paris ; Karniadakis, George Em</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-e16ddfca61b050f4764aca352bee1aaeaa83b5c5c62892cd9e3ad645c75bf2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Computational physics</topic><topic>Differential equations</topic><topic>Gaussian process</topic><topic>Integration</topic><topic>Integro-differential equations</topic><topic>Linear equations</topic><topic>Machine learning</topic><topic>Multi-fidelity modeling</topic><topic>Studies</topic><topic>Uncertainty</topic><topic>Uncertainty quantification</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raissi, Maziar</creatorcontrib><creatorcontrib>Perdikaris, Paris</creatorcontrib><creatorcontrib>Karniadakis, George Em</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raissi, Maziar</au><au>Perdikaris, Paris</au><au>Karniadakis, George Em</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring solutions of differential equations using noisy multi-fidelity data</atitle><jtitle>Journal of computational physics</jtitle><date>2017-04-15</date><risdate>2017</risdate><volume>335</volume><spage>736</spage><epage>746</epage><pages>736-746</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>For more than two centuries, solutions of differential equations have been obtained either analytically or numerically based on typically well-behaved forcing and boundary conditions for well-posed problems. We are changing this paradigm in a fundamental way by establishing an interface between probabilistic machine learning and differential equations. We develop data-driven algorithms for general linear equations using Gaussian process priors tailored to the corresponding integro-differential operators. The only observables are scarce noisy multi-fidelity data for the forcing and solution that are not required to reside on the domain boundary. The resulting predictive posterior distributions quantify uncertainty and naturally lead to adaptive solution refinement via active learning. This general framework circumvents the tyranny of numerical discretization as well as the consistency and stability issues of time-integration, and is scalable to high-dimensions.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2017.01.060</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8042-8354</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2017-04, Vol.335, p.736-746
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_journals_2064417823
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Artificial intelligence
Computational physics
Differential equations
Gaussian process
Integration
Integro-differential equations
Linear equations
Machine learning
Multi-fidelity modeling
Studies
Uncertainty
Uncertainty quantification
Well posed problems
title Inferring solutions of differential equations using noisy multi-fidelity data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A41%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20solutions%20of%20differential%20equations%20using%20noisy%20multi-fidelity%20data&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Raissi,%20Maziar&rft.date=2017-04-15&rft.volume=335&rft.spage=736&rft.epage=746&rft.pages=736-746&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2017.01.060&rft_dat=%3Cproquest_cross%3E2064417823%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2064417823&rft_id=info:pmid/&rft_els_id=S0021999117300761&rfr_iscdi=true